DOI QR코드

DOI QR Code

Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells

  • Wang, Chun-Hua (Department of Dermatology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Shyu, Rong-Yaun (Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Wu, Chang-Chieh (Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center) ;
  • Chen, Mao-Liang (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Lee, Ming-Cheng (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Lin, Yi-Yin (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Wang, Lu-Kai (Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital) ;
  • Jiang, Shun-Yuan (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Tsai, Fu-Ming (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation)
  • Received : 2017.12.11
  • Accepted : 2018.03.20
  • Published : 2018.06.30

Abstract

The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

Keywords

References

  1. Assimakopoulou, M. (2000). Human meningiomas: immunohistochemical localization of progesterone receptor and heat shock protein 27 and absence of estrogen receptor and PS2. Cancer Detect. Prev. 24, 163-168.
  2. Banerjee, S., Lin, C.F., Skinner, K.A., Schiffhauer, L.M., Peacock, J., Hicks, D.G., Redmond, E.M., Morrow, D., Huston, A., Shayne, M., et al. (2011). Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res. 71, 318-327. https://doi.org/10.1158/0008-5472.CAN-10-1778
  3. Bao, Y.P., Cook, L.J., O'Donovan, D., Uyama, E., and Rubinsztein, D.C. (2002). Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J. Biol. Chem. 277, 12263-12269. https://doi.org/10.1074/jbc.M109633200
  4. Carvalho, K.C., Cunha, I.W., Rocha, R.M., Ayala, F.R., Cajaiba, M.M., Begnami, M.D., Vilela, R.S., Paiva, G.R., Andrade, R.G., and Soares, F.A. (2011). GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo) 66, 965-972. https://doi.org/10.1590/S1807-59322011000600008
  5. Chen, X.H., Wu, W.G., and Ding, J. (2014). Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma. Tumour Biol. 35, 967-971. https://doi.org/10.1007/s13277-013-1129-9
  6. Cheng, H., Cenciarelli, C., Nelkin, G., Tsan, R., Fan, D., Cheng-Mayer, C., and Fidler, I.J. (2005). Molecular mechanism of hTid-1, the human homolog of Drosophila tumor suppressor l(2)Tid, in the regulation of NF-kappaB activity and suppression of tumor growth. Mol. Cell Biol. 25, 44-59. https://doi.org/10.1128/MCB.25.1.44-59.2005
  7. Ciocca, D.R., and Calderwood, S.K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 10, 86-103. https://doi.org/10.1379/CSC-99r.1
  8. Clagett-Dame, M., and DeLuca, H.F. (2002). The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347-381. https://doi.org/10.1146/annurev.nutr.22.010402.102745E
  9. Degos, L., Dombret, H., Chomienne, C., Daniel, M.T., Miclea, J.M., Chastang, C., Castaigne, S., and Fenaux, P. (1995). All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85, 2643-2653.
  10. Demand, J., Luders, J., and Hohfeld, J. (1998). The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell Biol. 18, 2023-2028. https://doi.org/10.1128/MCB.18.4.2023
  11. Edwards, K.M., and Munger, K. (2004). Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23, 8419-8431. https://doi.org/10.1038/sj.onc.1207732
  12. Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., et al. (2005). Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105, 1246-1255.
  13. Hamelin, C., Cornut, E., Poirier, F., Pons, S., Beaulieu, C., Charrier, J.P., Haidous, H., Cotte, E., Lambert, C., Piard, F., et al. (2011). Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 278, 4845-4859. https://doi.org/10.1111/j.1742-4658.2011.08385.x
  14. Hamrita, B., Chahed, K., Kabbage, M., Guillier, C.L., Trimeche, M., Chaieb, A., and Chouchane, L. (2008). Identification of tumor antigens that elicit a humoral immune response in breast cancer patients' sera by serological proteome analysis (SERPA). Clin. Chim. Acta 393, 95-102. https://doi.org/10.1016/j.cca.2008.03.017
  15. Huang, L., Yu, Z., Zhang, T., Zhao, X., and Huang, G. (2014). HSP40 interacts with pyruvate kinase M2 and regulates glycolysis and cell proliferation in tumor cells. PLoS One 9, e92949. https://doi.org/10.1371/journal.pone.0092949
  16. Hwang, Y.J., Lee, S.P., Kim, S.Y., Choi, Y.H., Kim, M.J., Lee, C.H., Lee, J.Y., and Kim, D.Y. (2009). Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med. J. 50, 399-406. https://doi.org/10.3349/ymj.2009.50.3.399
  17. Ito, N., Kamiguchi, K., Nakanishi, K., Sokolovskya, A., Hirohashi, Y., Tamura, Y., Murai, A., Yamamoto, E., Kanaseki, T., Tsukahara, T., et al. (2016). A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem. Biophys. Res. Commun. 474, 626-633. https://doi.org/10.1016/j.bbrc.2016.03.152
  18. Jing, C., El-Ghany, M.A., Beesley, C., Foster, C.S., Rudland, P.S., Smith, P., and Ke, Y. (2002). Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J. Natl. Cancer Inst. 94, 482-490. https://doi.org/10.1093/jnci/94.7.482
  19. Kim, S.W., Chao, T.H., Xiang, R., Lo, J.F., Campbell, M.J., Fearns, C., and Lee, J.D. (2004). Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res. 64, 7732-7739. https://doi.org/10.1158/0008-5472.CAN-04-1323
  20. Kim, S.W., Hayashi, M., Lo, J.F., Fearns, C., Xiang, R., Lazennec, G., Yang, Y., and Lee, J.D. (2005). Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res. 65, 8784-8791. https://doi.org/10.1158/0008-5472.CAN-04-4422
  21. Kwok, W.K., Pang, J.C., Lo, K.W., and Ng, H.K. (2009). Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genet. Cytogenet. 194, 58-64. https://doi.org/10.1016/j.cancergencyto.2009.06.005
  22. Lee, Y.M., Lee, J.O., Jung, J.H., Kim, J.H., Park, S.H., Park, J.M., Kim, E.K., Suh, P.G., and Kim, H.S. (2008). Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J. Biol. Chem. 283, 33969-33974. https://doi.org/10.1074/jbc.M804469200
  23. Li, C., Zhang, G., Zhao, L., Ma, Z., and Chen, H. (2016). Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 14, 15.
  24. Maehara, Y., Oki, E., Abe, T., Tokunaga, E., Shibahara, K., Kakeji, Y., and Sugimachi, K. (2000). Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology 58, 144-151. https://doi.org/10.1159/000012091
  25. Medina, R.A., and Owen, G.I. (2002). Glucose transporters: expression, regulation and cancer. Biol Res. 35, 9-26.
  26. Mitra, A., Shevde, L.A., and Samant, R.S. (2009). Multi-faceted role of HSP40 in cancer. Clin. Exp. Metastasis. 26, 559-567. https://doi.org/10.1007/s10585-009-9255-x
  27. Miyake, H., Muramaki, M., Kurahashi, T., Yamanaka, K., Hara, I., and Fujisawa, M. (2006). Enhanced expression of heat shock protein 27 following neoadjuvant hormonal therapy is associated with poor clinical outcome in patients undergoing radical prostatectomy for prostate cancer. Anticancer Res. 26, 1583-1587.
  28. Mizuiri, H., Yoshida, K., Toge, T., Oue, N., Aung, P.P., Noguchi, T., and Yasui, W. (2005). DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus: DNA methylation of CRBP1 and TIG1 is associated with tumor stage. Cancer Sci. 96, 571-577. https://doi.org/10.1111/j.1349-7006.2005.00082.x
  29. Mueckler, M., and Thorens, B. (2013). The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121-138. https://doi.org/10.1016/j.mam.2012.07.001
  30. Murphy, M.E. (2013). The HSP70 family and cancer. Carcinogenesis. 34, 1181-1188. https://doi.org/10.1093/carcin/bgt111
  31. Nagpal, S., Patel, S., Asano, A.T., Johnson, A.T., Duvic, M., and Chandraratna, R.A. (1996). Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269-274. https://doi.org/10.1111/1523-1747.ep12340668
  32. Oka, M., Sato, S., Soda, H., Fukuda, M., Kawabata, S., Nakatomi, K., Shiozawa, K., Nakamura, Y., Ohtsuka, K., and Kohno, S. (2001). Autoantibody to heat shock protein Hsp40 in sera of lung cancer patients. Jpn. J. Cancer Res. 92, 316-320. https://doi.org/10.1111/j.1349-7006.2001.tb01097.x
  33. Peng, Z., Shen, R., Li, Y.W., Teng, K.Y., Shapiro, C.L., and Lin, H.J. (2012). Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PLoS One 7, e36891. https://doi.org/10.1371/journal.pone.0036891
  34. Qiu, X.B., Shao, Y.M., Miao, S., and Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63, 2560-2570. https://doi.org/10.1007/s00018-006-6192-6
  35. Salani, B., Ravera, S., Amaro, A., Salis, A., Passalacqua, M., Millo, E., Damonte, G., Marini, C., Pfeffer, U., Sambuceti, G., et al. (2015). IGF1 regulates PKM2 function through Akt phosphorylation. Cell Cycle 14, 1559-1567. https://doi.org/10.1080/15384101.2015.1026490
  36. Shutoh, M., Oue, N., Aung, P.P., Noguchi, T., Kuraoka, K., Nakayama, H., Kawahara, K., and Yasui, W. (2005). DNA methylation of genes linked with retinoid signaling in gastric carcinoma: expression of the retinoid acid receptor beta, cellular retinol-binding protein 1, and tazarotene-induced gene 1 genes is associated with DNA methylation. Cancer 104, 1609-1619. https://doi.org/10.1002/cncr.21392
  37. Shyu, R.Y., Wang, C.H., Wu, C.C., Chen, M.L., Lee, M.C., Wang, L.K., Jiang, S.Y., and Tsai, F.M. (2016). Tazarotene-induced gene 1 enhanced cervical cell autophagy through transmembrane protein 192. Mol. Cells 39, 877-887. https://doi.org/10.14348/molcells.2016.0161
  38. Siddikuzzaman, Guruvayoorappan, C., and Berlin Grace, V.M. (2011). All trans retinoic acid and cancer. Immunopharmacol. Immunotoxicol. 33, 241-249.
  39. Sterrenberg, J.N., Blatch, G.L., and Edkins, A.L. (2011). Human DNAJ in cancer and stem cells. Cancer Lett. 312, 129-142. https://doi.org/10.1016/j.canlet.2011.08.019
  40. Syken, J., De-Medina, T., and Munger, K. (1999). TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc. Natl. Acad. Sci. USA 96, 8499-8504. https://doi.org/10.1073/pnas.96.15.8499
  41. Takai, N., Kawamata, N., Walsh, C.S., Gery, S., Desmond, J.C., Whittaker, S., Said, J.W., Popoviciu, L.M., Jones, P.A., Miyakawa, I., et al. (2005). Discovery of epigenetically masked tumor suppressor genes in endometrial cancer. Mol. Cancer Res. 3, 261-269. https://doi.org/10.1158/1541-7786.MCR-04-0110
  42. Tsai, F.M., Wu, C.C., Shyu, R.Y., Wang, C.H., and Jiang, S.Y. (2011). Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. J. Biomed. Sci. 18, 88. https://doi.org/10.1186/1423-0127-18-88
  43. Wang, X., Saso, H., Iwamoto, T., Xia, W., Gong, Y., Pusztai, L., Woodward, W.A., Reuben, J.M., Warner, S.L., Bearss, D.J., et al. (2013). TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase. Cancer Res. 73, 6516-6525. https://doi.org/10.1158/0008-5472.CAN-13-0967
  44. Warburg, O., Wind, F., and Negelein, E. (1927). The metabolism of tumors in the body. J Gen. Physiol. 8, 519-530. https://doi.org/10.1085/jgp.8.6.519
  45. Whitley, D., Goldberg, S.P., and Jordan, W.D. (1999). Heat shock proteins: a review of the molecular chaperones. J. Vasc. Surg. 29, 748-751. https://doi.org/10.1016/S0741-5214(99)70329-0
  46. Wu, C.C., Shyu, R.Y., Chou, J.M., Jao, S.W., Chao, P.C., Kang, J.C., Wu, S.T., Huang, S.L., and Jiang, S.Y. (2006). RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur. J. Cancer 42, 557-565. https://doi.org/10.1016/j.ejca.2005.11.015
  47. Wu, C.C., Tsai, F.M., Shyu, R.Y., Tsai, Y.M., Wang, C.H., and Jiang, S.Y. (2011). G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 11, 175. https://doi.org/10.1186/1471-2407-11-175
  48. Yan, Y., Li, Z., Xu, X., Chen, C., Wei, W., Fan, M., Chen, X., Li, J.J., Wang, Y., and Huang, J. (2016). All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern. Med. 16, 113. https://doi.org/10.1186/s12906-016-1088-y
  49. Yanatatsaneejit, P., Chalermchai, T., Kerekhanjanarong, V., Shotelersuk, K., Supiyaphun, P., Mutirangura, A., and Sriuranpong, V. (2008). Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncol. 44, 400-406. https://doi.org/10.1016/j.oraloncology.2007.05.008
  50. Yang, W., and Lu, Z. (2013). Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 339, 153-158. https://doi.org/10.1016/j.canlet.2013.06.008
  51. Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F., Lyssiotis, C.A., Aldape, K., Cantley, L.C., and Lu, Z. (2012). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295-1304. https://doi.org/10.1038/ncb2629
  52. Yoshidomi, K., Murakami, A., Yakabe, K., Sueoka, K., Nawata, S., and Sugino, N. (2014). Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. J. Obstet. Gynaecol. Res. 40, 1188-1196. https://doi.org/10.1111/jog.12325
  53. Yu, M., Yongzhi, H., Chen, S., Luo, X., Lin, Y., Zhou, Y., Jin, H., Hou, B., Deng, Y., Tu, L., et al. (2017). The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget 8, 43356-43367.
  54. Zhang, J., Liu, L., and Pfeifer, G.P. (2004). Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23, 2241-2249. https://doi.org/10.1038/sj.onc.1207328

Cited by

  1. Tazarotene-Induced Gene 1 (TIG1) Interacts with Serine Protease Inhibitor Kazal-Type 2 (SPINK2) to Inhibit Cellular Invasion of Testicular Carcinoma Cells vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/6171065
  2. Fructose-1,6-bisphosphatase 2 represses cervical cancer progression via inhibiting aerobic glycolysis through promoting pyruvate kinase isozyme type M2 ubiquitination vol.33, pp.1, 2018, https://doi.org/10.1097/cad.0000000000001185