• Title/Summary/Keyword: Biological enzymes

Search Result 776, Processing Time 0.025 seconds

Molecular Cloning and Characterization of Bovine CYP26A1 Promoter (소 CYP26A1 유전자 프로모터의 molecular cloning 및 특성)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • The retinoic acid (RA) plays an important role in the growth and development of many cells, and bioactive RA concentration is regulated by several enzymes, including CYP26A1. The expression of the CYP26A1 gene is regulated by RA, and the CYP26A1 gene is one of the candidates for RA-responsive genes. Although CYP26A1 genes are cloned from several animals, cloning of the CYP26A1 gene from cows has not been reported yet. The promoter region of CYP26A1 from cows was cloned by PCR and analyzed by sequence alignment with human and mouse CYP26A1. The RA-responsive element (RARE), DR-5 (ttggg), was located in this region and was perfectly conserved. The promoter region of bovine CYP26A1, which contains DR-5, was ligated to the luciferase reporter gene on transient transfection assays. The expression of CYP26A1-Luc promoter was activated by ATRA treatment in lung-derived mtCC cells. Co-transfection with RAR-α or -β with ATRA significantly activates the expression of CYP26A1-Luc promoter; however, it was less effective with either RAR-γ or RXR-γ. In addition, the endogenous gene expressions measured by Q-RT-PCR in mtCC cells were not significantly affected by ATRA treatment for 2 days; however, the expression of the endogenous CYP26A1 gene was diminished sharply at day 3 with ATRA treatment. In conclusion, the promoter region of bovine CYP26A1 contains conserved DR-5 RARE, which functions as a binding site for RAR-α or -β, and it is involved in the regulation of CYP26A1 gene expression and the control of RA signaling in mtCC cells.

Research on Ginseng Production During the Past 20 years (인삼재배 분야의 과거 20년 연구)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.472-500
    • /
    • 1996
  • Researches on mineral nutrition, physiology and phyrsiological diseases, . cultivaction methods. brceding. pest control quality management and extension during 1976-1995 in Korea were reviewed Review in brceding and pest control was restricted to the researches directely related to cultivaction. Mineral nulrient up take. partion and varicos factors such as top dreasing. Light intersity etc. and interrelationship between minerals were investigated. Top dressing was not effective due to low minera1 requorement Physiological characteristics on tempelature light and water were well elucidated and applied to assess traditional cultivation method and its inovation. Photosyrnthetic pigments. light harvest proteins and activity of related enzymes were studied. In nitrogen metabolism arginine, praline, ammonium, threonine appeared to have important role in re growth of shoot Saponin metabolism was studied in relation to growth and new ginsenosides were found but physiological role of saponin was not clearly elucidated yet Endogenous growth regulators were reported and various erogenous growth regulators were studied for growth stimulation. short stem and seed pruning etc. Various physiological diseases were investigated for cause and control measures were established. Water culture was little studied Forest culture was studied but not retched the recommendable stage Drip irrigation straw mulching. seasonal shading and soil preparation method including soil fertility adjustment were established for practical application. Shading materials completely changed to polyethylene net and materials of polymers The research on ginseng cultivation in paddy field opened the way to establish the permanent ginseng cultivation plantation Ginseng harvester and seeder were developed in the late 1950s. Transplanted and many other machines were developed in the early 1990s. In ginseng breeding only pure line selection was of practical significance several verities were at the stage of seed propagation at ginseng plantations. Mutation breeding (${\gamma}$-ray. X-ray chemicals) was not successful. The research on plantlet formation through tissue culture was a little progressed but still far behind to vegetative propagation. Disease control research was concentrated in the isolation and identification of pathogans. their ecological charactelistics and biological control and soil humigation. Potato root rot nematodes was found and control method was established. Insect and small animal control research was greatly progresses in identification, ecological investigation, and ecological and physical control. Weed control was less important due to the development of mulching method of ridge and ditch. Quality factors of raw ginseng in relation to red ginseng process were extensively studied. Traditional quality measures were elucidated in accordance with modern analytical chemistry resulting in the importance of peptides in the centrat part rather than ginsenosides For large root production growth promoting rootzone micrcorganisms (PGPRM) were isolated and active compounds were identified. Field test on PGPRM was on going. Varictus methods formality improvement through cultivation were developed. Management research of ginseng production was rare Extension was active throuch official and private organizations and through workshop for the extension specialists, and direct lectures to grower's. Extension services made the researcher to understand the existing problems at grower's fields. Research environment for ginseng production was in prime time only for three years when Korea Ginseng Research Institute was established then gradually aggravated.

  • PDF

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

  • Lee, Sung Ryul;Noh, Su Jin;Pronto, Julius Ryan;Jeong, Yu Jeong;Kim, Hyoung Kyu;Song, In Sung;Xu, Zhelong;Kwon, Hyog Young;Kang, Se Chan;Sohn, Eun-Hwa;Ko, Kyung Soo;Rhee, Byoung Doo;Kim, Nari;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.389-399
    • /
    • 2015
  • Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc ($Zn^{2+}$) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of $Zn^{2+}$ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular $Zn^{2+}$ levels are largely regulated by metallothioneins (MTs), $Zn^{2+}$ importers (ZIPs), and $Zn^{2+}$ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of $Zn^{2+}$. However, these regulatory actions of $Zn^{2+}$ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular $Zn^{2+}$ levels, $Zn^{2+}$-mediated signal transduction, impacts of $Zn^{2+}$ on ion channels and mitochondrial metabolism, and finally, the implications of $Zn^{2+}$ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of $Zn^{2+}$.

Cell Biological Study on Factors Affecting Brain Formation at Early Chick Embryo (1) The Effect of Serotonin (초기 계배의 뇌형성에 미치는 몇가지 요인에 관한 세포 생물학적 연구 (1) Serotonin의 영향)

  • 최임순;주상옥;주충노;오억수;신길상
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.55-73
    • /
    • 1989
  • The effect of tryptophan or serotonin on the early stage of chick brain development has been morphologically investigated using an electron microscope. The electron micrographs of neural plate cells of 1-day chick embryo treated with tryptophan or serotonin showed irregularity, evagination and disruption of nuclear membrane and nuclear chromatin condenstation, nucleolar margination and segregation. Hypertrophy of stalks, vesicles and vaculoes were seen and dilated and disrupted rough endoplasmic reticulum and underdeveloped neurotubules were also observed. In mesenchyme cells of tryptophan or serotonin administered 18 hr embryo, irregular nuclear membrane, swollen mitochondria, dilated rough endoplasmic reticulum and very large yolk granules were observed. Furthermore, DNA, RNA and protein contents of the embryos treated with typtophan or serotonin were considerably lower than those of control group. The amount of tubulin of the experimental groups was also greatly lower than that of control, suggesting that the impairment of microtubule formation occurred. Tryptophan or serotonin administration might depress the biosynthesis, of nucleic acid and protein including some enzymes tested. It seems that the serotonin formed from exogeneous tryptophan might inhibit the degradation of yolk granule by feedback regulation mechanism so as to impair microtububle and microvilli formation followed by a malformation of chick embryos.

  • PDF

Transformation of Ginsenoside Rd to Ginsenoside F2 by Enzymes of Leuconostoc fallax LH3 (Leuconostoc fallax LH3이 생산하는 효소에 의한 Ginsenoside Rd의 Ginsenoside F2로의 전환)

  • Quan, Lin-Hu;Cheng, Le-Qin;Na, Ju-Ryun;Kim, Ho-Bin;Park, Min-Ju;Kim, Se-Hwa;Kim, Myung-Kyum;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components, responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides at the gastrointestinal tract was extremely low, when ginseng taken orally. In order to improve the absorption and bioavailability, transformation of major ginsenosides into more active and valuable minor ginsenoside is much required. In this present study, We isolated a lactic acid bacteria Leuconostoc fallax LH3 from the Korean fermented food Kimchi, which have higher ${\beta}$-glucosidase activity. Using the ethanol precipitated curd enzyme of Leuconostoc fallax LH3, we investigated the biotransformation of ginsenoside Rd at different experimental condition to increase transformation. The maximum convertion was supported at 30 $^{\circ}C$ and decreased when temperatures increased. In order to optimize the effect of pH, the curd enzyme was mixed 20 mM sodium phosphate buffer (pH 3.5 to pH 8.0). Ginsenoside Rd was almost hydrolyzed between pH 7.0 and pH 9.0, but not hydrolyzed above pH 10.0. Ginsenoside Rd was hydrolyzed after 24 hrs incubation, but whereas the ginsenoside F2 was appeared from 36 hrs, and all ginsenoside Rd was transformed to F2 after the 60 hrs incubation. Based on this study, the curd enzyme of Leuconostoc fallax LH3 transformed the ginsenoside Rd at the 30$^{\circ}C$ and the pH optimum of 7.0 to 9.0 after the 60 hrs incubation time.

Variations of DOC and Phenolics in Pore-water of Peatlands (이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도)

  • Freeman, Chris;Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.306-311
    • /
    • 2002
  • The amount and composition of dissolved organic carbon in wetlands are of great importance for their influence in secondary productivity, various biogeochemical processes, and aquatic ecosystem functions. In the present study, we measured variations of DOC and phenolics concentrations in pore-water of three northern peatlands (bog, fen, and swamp) over a 1-year period. General microbial activity (soil respirometry) and phenol oxidase enzyme activity were determined in the same peatlands to elucidate mechanisms underlying the differences in DOC and phenolics contents. The concentrations of DOC varied 25.5-45.4 (bog),29.2-71.4 (fen), and 13.5-87.6 (swamp) mg/L, while phenolic concentrations ranged 13.3-48.1 (bog), 7.6-29.5(fen) , and 4.9-30.8 (swamp) mg/L. The seasonal variations of DOC and phenolics in the swamp suggest that litterfall may be one of the most important factors for the DOC dynamics in such systems. The lowest microbial activity and phenol oxidase activity were found in the bog, which appears to Induce high percentage of phenolic contents in pore-water from bogs. It is also suggested that not only the DOC concentrations but also composition of DOC is of great importance in wetland biogeochernistry.

Characterization of Potential Plant Growth-promoting Rhizobacteria as Biological Agents with Antifungal Activity, Plant Growth-promoting Activity, and Mineral Solubilizing Activity (항진균 활성, 식물 생장촉진 활성, 미네랄 가용화능을 가진 생물학적 제제로서 잠재적 식물 생장촉진 근권세균의 특성조사)

  • Lee, Song Min;Kim, Ji-Youn;Kim, Hee Sook;Oh, Ka-Yoon;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.641-653
    • /
    • 2021
  • The purpose of this study was to confirm the antifungal activity, plant growth-promoting activity, and mineral solubilizing activity of 18 types of bacteria isolated purely from rhizosphere soil. The potential of isolates of the genus Bacillus and Pseudomonas as biocontrol agents was confirmed through the antifungal activity of these isolates. This activity has been determined to be due to various hydrolytic enzymes on the cell wall of plant pathogenic fungi and the production of siderophores in isolates. In addition, most of the isolates have been found to have aminocyclopropane-1-carboxylate deaminase production activity, indole-3-acetic acid production activity, and nitrogen fixation activity. These characteristics are believed to have a positive effect on root development, growth, and the productivity of crops via a reduction in the concentration of ethylene under conditions of environmental stress, to which plants are commonly exposed. In addition, on testing for the solubilizing activity of the isolates for phosphoric acid, silicon, calcium carbonate, and zinc, some isolates were found to have mineral solubilizing activities. Inoculation of these isolates during plant growth is expected to assist plant growth by converting nutrients necessary for growth into usable forms that can be absorbed by plants. The 18 isolated strains can be used as biocontrol agents due to their antifungal activity, plant growthpromoting activity, and mineral solubilizing activity.

Biotransformation of Ginsenoside Rd from Red Ginseng Saponin using Commercial β-glucanase (상업용 β-glucanase를 이용한 홍삼유래 사포닌으로부터 Ginsnoside Rd 의 생물 전환)

  • Kang, Hye Jung;Lee, Jong Woo;Park, Tae Woo;Park, Hye Yoon;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2020
  • Bio-conversion manufacturing technology has been developed to produce ginsenoside Rd which is increasingly in demand as a cosmetic material due to various possibilities related to improving skin function. In order to convert ginsenoside Rb1 which is contained in red ginseng saponin (RGS) into Rd, several commercial enzymes were tested. Viscoflow MG was found to be the most efficient. In order to optimize the conversion of RGS to ginsenoside Rd by enzymatic transition was carried out using response surface methodology (RSM) based on Box-Behnken design (BBD). The main independent variables were RGS concentration, enzyme concentration, and reaction time. Conversion of ginsenoside Rd was performed under 17 conditions selected according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rd ranged from 0.3113 g/L to 0.5277 g/L, and the highest production volume was obtained under condition of reacting 2% RGS and 1.25% enzyme for 13.5 hours. Consequently, RGS concentration, enzyme concentration which is 0.05 less than p-value and among the interactions between the independent variables, the interaction between enzyme concentration and reaction time was confirmed to be the most influential.

Antioxidant, Anti-inflammatory and Anti-photoaging Activities of Hydrolyzed Peony (Paeonia lactiflora Pall.) Flower (작약꽃 가수분해물의 항산화, 항염 및 광노화 억제 효능)

  • Kyung Ju Lee;You Ah Kim;Byoung Jun Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.259-267
    • /
    • 2023
  • This study was conducted to evaluate physiological activity of flower extract of peony (Paeonia lactiflora Pall.) by hydrolysis and to use it as a valuable cosmetic ingredients. Four cultivar of peony flowers were extracted, and the highest active ingredient contents was selected, and that cultivar was used for hydrolyzing. The results showed that high concentration of hydrochloric acid (HCl) hydrolyzed, and biological hydrolysis using enzymes had no activity. The deglycosylation of peonidin 3,5-diglucoside occurred by hydrolysis. The hydrolysate contains 63.3 ppm of peonidin, a red-colored anthocyanin compound. The antioxidant activity of hydrolysate was compared with extract. The results showed the strong antioxidant activity in hydrolysate (96%) than extract (82%). In addition, hydrolysate of peony flower showed higher inhibitory activity of NO release than extract. UVA assay using fibroblast cell (CCD-986Sk) showed that hydrolysate increased cell viability than extract under UVA exposure. Based on these results, we anticipate that hydrolysate of peony flower can be used a valuable cosmetic ingredient.