DOI QR코드

DOI QR Code

The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

  • Lee, Sung Ryul (Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University) ;
  • Noh, Su Jin (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Pronto, Julius Ryan (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Jeong, Yu Jeong (Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kim, Hyoung Kyu (Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University) ;
  • Song, In Sung (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Xu, Zhelong (Department of Physiology and Pathophysiology, Tianjin Medical University) ;
  • Kwon, Hyog Young (Soonchunhyang Institute of Medio-bio Science (SIMS), Soonchunhyang University) ;
  • Kang, Se Chan (Department of Life Science, Gachon University) ;
  • Sohn, Eun-Hwa (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Ko, Kyung Soo (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Rhee, Byoung Doo (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kim, Nari (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Han, Jin (College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
  • Received : 2015.04.28
  • Accepted : 2015.06.08
  • Published : 2015.09.01

Abstract

Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc ($Zn^{2+}$) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of $Zn^{2+}$ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular $Zn^{2+}$ levels are largely regulated by metallothioneins (MTs), $Zn^{2+}$ importers (ZIPs), and $Zn^{2+}$ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of $Zn^{2+}$. However, these regulatory actions of $Zn^{2+}$ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular $Zn^{2+}$ levels, $Zn^{2+}$-mediated signal transduction, impacts of $Zn^{2+}$ on ion channels and mitochondrial metabolism, and finally, the implications of $Zn^{2+}$ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of $Zn^{2+}$.

Keywords

References

  1. Raulin J. Annales des sciences naturelles. Botanique Et BIologie Vegetale. 1869;11:93-345.
  2. Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961;31:532-546. https://doi.org/10.1016/0002-9343(61)90137-1
  3. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3-18. https://doi.org/10.1016/j.jtemb.2006.01.006
  4. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79-118. https://doi.org/10.1152/physrev.1993.73.1.79
  5. Andreini C, Bertini I, Rosato A. Metalloproteomes: a bioinformatic approach. Acc Chem Res. 2009;42:1471-1479. https://doi.org/10.1021/ar900015x
  6. Costello LC, Fenselau CC, Franklin RB. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem. 2011;105:589-599. https://doi.org/10.1016/j.jinorgbio.2011.02.002
  7. Dudev T, Lim C. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev. 2003;103:773-788. https://doi.org/10.1021/cr020467n
  8. Permyakov EA, Kretsinger RH. Cell signaling, beyond cytosolic calcium in eukaryotes. J Inorg Biochem. 2009;103:77-86. https://doi.org/10.1016/j.jinorgbio.2008.09.006
  9. Kochanczyk T, Drozd A, Krezel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins--insights into zinc regulation. Metallomics. 2015;7:244-257. https://doi.org/10.1039/C4MT00094C
  10. Xu Z, Zhou J. Zinc and myocardial ischemia/reperfusion injury. Biometals. 2013;26:863-878. https://doi.org/10.1007/s10534-013-9671-x
  11. Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch. 2012;464:123-131. https://doi.org/10.1007/s00424-012-1079-x
  12. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 2011;16:1123-1134. https://doi.org/10.1007/s00775-011-0797-4
  13. Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med. 2012;53:1748-1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568
  14. Hughes S, Samman S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr. 2006;25:285-291. https://doi.org/10.1080/07315724.2006.10719537
  15. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal. 2012;5:ra11.
  16. Haase H, Rink L. Zinc signals and immune function. Biofactors. 2014;40:27-40. https://doi.org/10.1002/biof.1114
  17. Takeda A, Nakamura M, Fujii H, Tamano H. Synaptic $Zn^{2+}$ homeostasis and its significance. Metallomics. 2013;5:417-423. https://doi.org/10.1039/c3mt20269k
  18. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4:82-91. https://doi.org/10.3945/an.112.003038
  19. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65:238-309. https://doi.org/10.1152/physrev.1985.65.2.238
  20. Tran CD, Butler RN, Philcox JC, Rofe AM, Howarth GS, Coyle P. Regional distribution of metallothionein and zinc in the mouse gut: comparison with metallothionien-null mice. Biol Trace Elem Res. 1998;63:239-251. https://doi.org/10.1007/BF02778942
  21. Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ. Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta. 2013;1830:5456-5464. https://doi.org/10.1016/j.bbagen.2013.05.028
  22. Scott BJ, Bradwell AR. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem. 1983;29:629-633.
  23. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003;1611:16-30. https://doi.org/10.1016/S0005-2736(03)00048-8
  24. Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579:427-432. https://doi.org/10.1016/j.febslet.2004.12.006
  25. Sekler I, Sensi SL, Hershfinkel M, Silverman WF. Mechanism and regulation of cellular zinc transport. Mol Med. 2007;13:337-343.
  26. Palmiter RD, Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 2004;447:744-751. https://doi.org/10.1007/s00424-003-1070-7
  27. Powell SR, Aiuto L, Hall D, Tortolani AJ. Zinc supplementation enhances the effectiveness of St. Thomas' Hospital No. 2 cardioplegic solution in an in vitro model of hypothermic cardiac arrest. J Thorac Cardiovasc Surg. 1995;110:1642-1648. https://doi.org/10.1016/S0022-5223(95)70025-0
  28. Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J. 2004;377:131-139. https://doi.org/10.1042/bj20031183
  29. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition. 2010;26:1050-1057. https://doi.org/10.1016/j.nut.2010.03.007
  30. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151-172. https://doi.org/10.1146/annurev.nutr.24.012003.132402
  31. Carpene E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol. 2007;21 Suppl 1:35-39. https://doi.org/10.1016/j.jtemb.2007.09.011
  32. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59:627-647. https://doi.org/10.1007/s00018-002-8454-2
  33. Langmade SJ, Ravindra R, Daniels PJ, Andrews GK. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem. 2000;275:34803-34809. https://doi.org/10.1074/jbc.M007339200
  34. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci. 1994;14:5844-5857. https://doi.org/10.1523/JNEUROSCI.14-10-05844.1994
  35. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR. Insights into $Zn^{2+}$ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol. 2008;294:C726-742. https://doi.org/10.1152/ajpcell.00541.2007
  36. Hogstrand C, Kille P, Nicholson RI, Taylor KM. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med. 2009;15:101-111. https://doi.org/10.1016/j.molmed.2009.01.004
  37. Kiedrowski L. Proton-dependent zinc release from intracellular ligands. J Neurochem. 2014;130:87-96. https://doi.org/10.1111/jnc.12712
  38. Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci. 2011;32:480-486. https://doi.org/10.1016/j.tips.2011.04.001
  39. Nowakowski A, Petering D. Sensor specific imaging of proteomic $Zn^{2+}$ with zinquin and TSQ after cellular exposure to N-ethylmaleimide. Metallomics. 2012;4:448-456. https://doi.org/10.1039/c2mt00189f
  40. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH. Modulation of mitochondrial function by endogenous $Zn^{2+}$ pools. Proc Natl Acad Sci U S A. 2003;100:6157-6162. https://doi.org/10.1073/pnas.1031598100
  41. Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I. Identification of the $Zn^{2+}$ binding site and mode of operation of a mammalian $Zn^{2+}$ transporter. J Biol Chem. 2009;284:17677-17686. https://doi.org/10.1074/jbc.M109.007203
  42. Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. 2002;109:817-826. https://doi.org/10.1172/JCI0214442
  43. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000;130(5S Suppl):1455S-1458S. https://doi.org/10.1093/jn/130.5.1455S
  44. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol. 2009;53:414-423. https://doi.org/10.1097/FJC.0b013e3181a15e77
  45. Tuncay E, Okatan EN, Toy A, Turan B. Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic $Zn^{2+}$ and $Ca^{2+}$ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev. 2014;2014:290381.
  46. Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC. Zinc inhibition of cAMP signaling. J Biol Chem. 2002;277:11859-11865. https://doi.org/10.1074/jbc.M108808200
  47. Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL. Zinc modulation of basal and ${\beta}$-adrenergically stimulated L-type $Ca^{2+}$ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch. 2012;464:459-470. https://doi.org/10.1007/s00424-012-1162-3
  48. Puceat M, Bony C, Jaconi M, Vassort G. Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Lett. 1998;431:189-194. https://doi.org/10.1016/S0014-5793(98)00747-9
  49. Gomez AM, Kerfant BG, Vassort G. Microtubule disruption modulates $Ca^{2+}$ signaling in rat cardiac myocytes. Circ Res. 2000;86:30-36. https://doi.org/10.1161/01.RES.86.1.30
  50. Volpe SL, Lowe NM, Woodhouse LR, King JC. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men. Br J Sports Med. 2007;41:156-161. https://doi.org/10.1136/bjsm.2006.030346
  51. Bellomo E, Massarotti A, Hogstrand C, Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics. 2014;6:1229-1239. https://doi.org/10.1039/C4MT00086B
  52. Pandey NR, Vardatsikos G, Mehdi MZ, Srivastava AK. Cell-type-specific roles of IGF-1R and EGFR in mediating $Zn^{2+}$-induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem. 2010;15:399-407. https://doi.org/10.1007/s00775-009-0612-7
  53. Haase H, Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals. 2005;18:333-338. https://doi.org/10.1007/s10534-005-3707-9
  54. Aslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell. 1999;96:751-753. https://doi.org/10.1016/S0092-8674(00)80584-X
  55. Turan B, Fliss H, Desilets M. Oxidants increase intracellular free $Zn^{2+}$ concentration in rabbit ventricular myocytes. Am J Physiol. 1997;272:H2095-2106.
  56. Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B. Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res. 2011;89:634-642. https://doi.org/10.1093/cvr/cvq352
  57. Tuncay E, Okatan EN, Vassort G, Turan B. ${\beta}$-blocker timolol prevents arrhythmogenic $Ca^{2+}$ release and normalizes $Ca^{2+}$ and $Zn^{2+}$ dyshomeostasis in hyperglycemic rat heart. PLoS One. 2013;8:e71014. https://doi.org/10.1371/journal.pone.0071014
  58. Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem. 2002;277:44327-44331. https://doi.org/10.1074/jbc.M205634200
  59. Wang G, Strang C, Pfaffinger PJ, Covarrubias M. $Zn^{2+}$-dependent redox switch in the intracellular T1-T1 interface of a Kv channel. J Biol Chem. 2007;282:13637-13647. https://doi.org/10.1074/jbc.M609182200
  60. Zhang S, Kehl SJ, Fedida D. Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys J. 2001;81:125-136. https://doi.org/10.1016/S0006-3495(01)75686-X
  61. Mahaut-Smith MP. The effect of zinc on calcium and hydrogen ion currents in intact snail neurones. J Exp Biol. 1989;145:455-464.
  62. Stanfield PR. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J Physiol. 1975;251:711-735. https://doi.org/10.1113/jphysiol.1975.sp011118
  63. Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 2000;26:187-196. https://doi.org/10.1016/S0896-6273(00)81149-6
  64. Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW. $Zn^{2+}$ current is mediated by voltage-gated $Ca^{2+}$ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol. 2000;528 Pt 1:39-52. https://doi.org/10.1111/j.1469-7793.2000.00039.x
  65. Atar D, Backx PH, Appel MM, Gao WD, Marban E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem. 1995;270:2473-2477. https://doi.org/10.1074/jbc.270.6.2473
  66. Andersson DA, Gentry C, Moss S, Bevan S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular $Zn^{2+}$. Proc Natl Acad Sci U S A. 2009;106:8374-8379. https://doi.org/10.1073/pnas.0812675106
  67. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol. 2009;5:183-190. https://doi.org/10.1038/nchembio.146
  68. Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85:563-570. https://doi.org/10.1046/j.1471-4159.2003.01678.x
  69. Ye B, Maret W, Vallee BL. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci U S A. 2001;98:2317-2322. https://doi.org/10.1073/pnas.041619198
  70. Kleiner D. The effect of $Zn^{2+}$ ions on mitochondrial electron transport. Arch Biochem Biophys. 1974;165:121-125. https://doi.org/10.1016/0003-9861(74)90148-9
  71. Maret W, Jacob C, Vallee BL, Fischer EH. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999;96:1936-1940. https://doi.org/10.1073/pnas.96.5.1936
  72. Meeusen JW, Nowakowski A, Petering DH. Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem. 2012;51:3625-3632. https://doi.org/10.1021/ic2025236
  73. Vallee BL. Metallothionein: historical review and perspectives. Experientia Suppl. 1979;34:19-39. https://doi.org/10.1007/978-3-0348-6493-0_1
  74. Maret W, Heffron G, Hill HA, Djuricic D, Jiang LJ, Vallee BL. The ATP/metallothionein interaction: NMR and STM. Biochemistry. 2002;41:1689-1694. https://doi.org/10.1021/bi0116083
  75. Skulachev VP, Evtodienko IuV, Iasaitis AA, Gmirnova EG, Chistiakov VV. Reversible suppression of electron transfer between cytochromes B and C. Vopr Med Khim. 1966;12:438-440.
  76. Berry EA, Zhang Z, Bellamy HD, Huang L. Crystallographic location of two $Zn^{2+}$-binding sites in the avian cytochrome bc(1) complex. Biochim Biophys Acta. 2000;1459:440-448. https://doi.org/10.1016/S0005-2728(00)00182-1
  77. Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ. $Zn^{2+}$ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem. 2000;275:13441-13447. https://doi.org/10.1074/jbc.275.18.13441
  78. Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem. 2002;277:10064-10072. https://doi.org/10.1074/jbc.M108264200
  79. Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ. Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun. 2005;332:853-858. https://doi.org/10.1016/j.bbrc.2005.04.170
  80. Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2011;2:101-111. https://doi.org/10.3945/an.110.000232
  81. Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. 2005;5:143-153. https://doi.org/10.1016/j.mito.2005.02.001
  82. Devinney MJ, Malaiyandi LM, Vergun O, DeFranco DB, Hastings TG, Dineley KE. A comparison of $Zn^{2+}$- and $Ca^{2+}$-triggered depolarization of liver mitochondria reveals no evidence of $Zn^{2+}$-induced permeability transition. Cell Calcium. 2009;45:447-455. https://doi.org/10.1016/j.ceca.2009.03.002
  83. Wudarczyk J, Debska G, Lenartowicz E. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys. 1999;363:1-8. https://doi.org/10.1006/abbi.1998.1058
  84. Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002;52:311-318. https://doi.org/10.1002/pros.10128
  85. Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 2008;7:25. https://doi.org/10.1186/1476-4598-7-25
  86. Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV, Zukin RS. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci. 2004;24:9903-9913. https://doi.org/10.1523/JNEUROSCI.1713-04.2004
  87. McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci. 2014;6:77.
  88. Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6:1175-1180. https://doi.org/10.1039/c3mt00353a
  89. Maret W. Zinc and human disease. Met Ions Life Sci. 2013;13:389-414. https://doi.org/10.1007/978-94-007-7500-8_12
  90. Frederickson C, Frederickson CJ, Maret W, Sandstead H, Giblin L, Thompson R. Meeting report: zinc signals 2007-expanding roles of the free zinc ion in biology. Sci STKE. 2007;2007:pe61.
  91. Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;4:676-694. https://doi.org/10.3390/nu4070676
  92. Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology. 2007;148:13-20. https://doi.org/10.1210/en.2006-0933
  93. Mlyniec K, Budziszewska B, Holst B, Ostachowicz B, Nowak G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int J Neuropsychopharmacol. 2014;18. doi: 10.1093/ijnp/pyu002.
  94. Popovics P, Stewart AJ. GPR39: a $Zn^{2+}$-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci. 2011;68:85-95. https://doi.org/10.1007/s00018-010-0517-1
  95. Halas ES, Hunt CD, Eberhardt MJ. Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav. 1986;37:451-458. https://doi.org/10.1016/0031-9384(86)90205-2
  96. Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI. The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res. 2010;17:1-14. https://doi.org/10.1007/s12640-009-9067-4
  97. Seth R, Corniola RS, Gower-Winter SD, Morgan TJ Jr, Bishop B, Levenson CW. Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol. 2015;30:59-65. https://doi.org/10.1016/j.jtemb.2014.10.010
  98. Weiss JH, Sensi SL, Koh JY. $Zn^{2+}$: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci. 2000;21:395-401. https://doi.org/10.1016/S0165-6147(00)01541-8
  99. Lee J, Kim CH, Kim DG, Ahn YS. Zinc inhibits amyloid beta production from Alzheimer's amyloid precursor protein in SH-SY5Y cells. Korean J Physiol Pharmacol. 2009;13:195-200. https://doi.org/10.4196/kjpp.2009.13.3.195
  100. Tamaki M, Fujitani Y. Role of zinc in type 2 diabetes. Nihon Eiseigaku Zasshi. 2014;69:15-23. https://doi.org/10.1265/jjh.69.15
  101. Miao X, Sun W, Fu Y, Miao L, Cai L. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med. 2013;7:31-52. https://doi.org/10.1007/s11684-013-0251-9
  102. Yi T, Vick JS, Vecchio MJ, Begin KJ, Bell SP, Delay RJ, Palmer BM. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H706-715. https://doi.org/10.1152/ajpheart.00025.2013
  103. Ciofalo FR, Thomas LJ Jr. The effects of zinc on contractility, membrane potentials, and cation content of rat atria. J Gen Physiol. 1965;48:825-839. https://doi.org/10.1085/jgp.48.5.825
  104. Schnieden H, Small RC. Spasmolytic effects of cadmium and zinc ions upon the guinea-pig isolated ileum preparation. Br J Pharmacol. 1971;41:488-499. https://doi.org/10.1111/j.1476-5381.1971.tb08046.x
  105. Evangelou A, Kalfakakou V. Electrocardiographic alterations induced by zinc ions on isolated guinea pig heart preparations. Biol Trace Elem Res. 1993;36:203-208. https://doi.org/10.1007/BF02783179
  106. Oster O, Dahm M, Oelert H. Element concentrations (selenium, copper, zinc, iron, magnesium, potassium, phosphorous) in heart tissue of patients with coronary heart disease correlated with physiological parameters of the heart. Eur Heart J. 1993;14:770-774. https://doi.org/10.1093/eurheartj/14.6.770
  107. Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SS, Ebrahimi P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res. 2009;127:116-123. https://doi.org/10.1007/s12011-008-8237-1
  108. Witte KK, Clark AL, Cleland JG. Chronic heart failure and micronutrients. J Am Coll Cardiol. 2001;37:1765-1774. https://doi.org/10.1016/S0735-1097(01)01227-X
  109. Gomez E, del Diego C, Orden I, Elosegui LM, Borque L, Escanero JF. Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction. J Trace Elem Med Biol. 2000;14:65-70. https://doi.org/10.1016/S0946-672X(00)80031-0
  110. Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010;13:1549-1573. https://doi.org/10.1089/ars.2010.3111
  111. Cohen N, Golik A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev. 2006;11:19-24. https://doi.org/10.1007/s10741-006-9189-1
  112. Meerarani P, Reiterer G, Toborek M, Hennig B. Zinc modulates PPARgamma signaling and activation of porcine endothelial cells. J Nutr. 2003;133:3058-3064. https://doi.org/10.1093/jn/133.10.3058
  113. Cho YS, Lee KH, Park JW. Pyrithione-zinc Prevents UVB-induced Epidermal Hyperplasia by Inducing HIF-1alpha. Korean J Physiol Pharmacol. 2010;14:91-97. https://doi.org/10.4196/kjpp.2010.14.2.91
  114. Alcantara EH, Shin MY, Feldmann J, Nixon GF, Beattie JH, Kwun IS. Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis. 2013;228:46-52. https://doi.org/10.1016/j.atherosclerosis.2013.01.030
  115. Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol. 2004;559:157-167. https://doi.org/10.1113/jphysiol.2004.065094
  116. Wroblewski N, Schill WB, Henkel R. Metal chelators change the human sperm motility pattern. Fertil Steril. 2003;79 Suppl 3:1584-1589. https://doi.org/10.1016/S0015-0282(03)00255-3
  117. Costello LC, Franklin RB. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther. 2012;12:121-128. https://doi.org/10.1586/era.11.190
  118. Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281:39699-39707. https://doi.org/10.1074/jbc.M605821200
  119. Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277-298. https://doi.org/10.1146/annurev.nutr.24.012003.132454
  120. Donnelly TE Jr. Effects of zinc chloride on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. Biochim Biophys Acta. 1978;522:151-160. https://doi.org/10.1016/0005-2744(78)90331-5
  121. Haase H, Beyersmann D. Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun. 2002;296:923-928. https://doi.org/10.1016/S0006-291X(02)02017-X
  122. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods. 1987;20:91-103. https://doi.org/10.1016/0165-0270(87)90042-2

Cited by

  1. Candesartan ameliorates acute myocardial infarction in rats through inducible nitric oxide synthase, nuclear factor-κB, monocyte chemoattractant protein-1, activator protein-1 and restoration of vol.12, pp.6, 2015, https://doi.org/10.3892/mmr.2015.4432
  2. Zn2+ and mPTP Mediate Endoplasmic Reticulum Stress Inhibition-Induced Cardioprotection Against Myocardial Ischemia/Reperfusion Injury vol.174, pp.1, 2015, https://doi.org/10.1007/s12011-016-0707-2
  3. Parameters Influencing Zinc in Experimental Systems in Vivo and in Vitro vol.6, pp.3, 2015, https://doi.org/10.3390/met6030071
  4. Zinc Levels in Left Ventricular Hypertrophy vol.176, pp.1, 2015, https://doi.org/10.1007/s12011-016-0808-y
  5. Differential effects of Zincum metallicum on cell models vol.106, pp.3, 2015, https://doi.org/10.1016/j.homp.2017.02.004
  6. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology vol.18, pp.11, 2015, https://doi.org/10.3390/ijms18112395
  7. Cardiac changes in apoptosis, inflammation, oxidative stress, and nitric oxide system induced by prenatal and postnatal zinc deficiency in male and female rats vol.57, pp.2, 2015, https://doi.org/10.1007/s00394-016-1343-5
  8. Cellular toxicity of zinc can be attenuated by sodium hydrogen sulfide in neuronal SH-SY5Y cell vol.14, pp.4, 2015, https://doi.org/10.1007/s13273-018-0047-8
  9. Zinc ions regulate opening of tight junction favouring efflux of macromoleculesviathe GSK3β/snail-mediated pathway vol.10, pp.1, 2015, https://doi.org/10.1039/c7mt00288b
  10. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/9156285
  11. Assessment of the Biocompatibility and Biological Effects of Biodegradable Pure Zinc Material in the Colorectum vol.4, pp.12, 2015, https://doi.org/10.1021/acsbiomaterials.8b00957
  12. Associations of trace elements in blood with the risk of isolated ventricular septum defects and abnormal cardiac structure in children vol.26, pp.10, 2015, https://doi.org/10.1007/s11356-019-04312-0
  13. Serum Zinc Measurement, Total Antioxidant Capacity, and Lipid Peroxide Among Acute Coronary Syndrome Patients With and Without ST Elevation vol.188, pp.1, 2015, https://doi.org/10.1007/s12010-018-2917-x
  14. Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia-reperfusion injury through depletion of glutathione vol.121, pp.9, 2015, https://doi.org/10.1017/s0007114519000230
  15. Zinc chelator TPEN induces pancreatic cancer cell death through causing oxidative stress and inhibiting cell autophagy vol.234, pp.11, 2015, https://doi.org/10.1002/jcp.28670
  16. Zinc transporters maintain longevity by influencing insulin/IGF‐1 activity inCaenorhabditis elegans vol.594, pp.9, 2015, https://doi.org/10.1002/1873-3468.13725