• Title/Summary/Keyword: Biological aspects

Search Result 436, Processing Time 0.036 seconds

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Nutriproteomics: Identifying the Molecular Targets of Nutritive and Non-nutritive Components of the Diet

  • Barnes, Stephen;Kim, Helen
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.59-74
    • /
    • 2004
  • The study of whole patterns of changes in protein expression and their modifications, or proteomics, presents both technological advances as well as formidable challenges to biological researchers. Nutrition research and the food sciences in general will be strongly influenced by the new knowledge generated by the proteomics approach. This review examines the different aspects of proteomics technologies, while emphasizing the value of consideration of "traditional" aspects of protein separation. These include the choice of the cell, the subcellular fraction, and the isolation and purification of the relevant protein fraction (if known) by protein chromatographic procedures. Qualitative and quantitative analyses of proteins and their peptides formed by proteolytic hydrolysis have been substantially enhanced by the development of mass spectrometry technologies in combination with nanoscale fluidics analysis. These are described, as are the pros and cons of each method in current use.

Passive acoustic fish detection analysis and its feasible aspects (수동어탐의 가능성과 전망)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.98-103
    • /
    • 1986
  • The passive acoustic system only has generally used in fish detection. But the passive acoustic system has not been tried in fishing since Freytag has proposed a possibilities of the passive detection of fishes in 1963. This paper describes the .feasible aspects of fish detection by listening of the sound they make. The passive acoustic system accompanied the active acoustic system may expand the range of detection and compensate for lack of capabilities each other, but there are some difficulties in noise rejection because the fre9uency range of ship noises covers the whole range vf biological sounds. The attempt to collect useful informations from underwater would be greatly contributed in fisheries.

  • PDF

Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration

  • Kim, Lou W.
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.437-444
    • /
    • 2017
  • Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.

A Study of Sexual Attitudes and Opinions for 10th Grade Students in Co-Ed (고등학생들의 성문화)

  • Moon, In-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 2000
  • Objectives: The purpose of this research is to identify and understand sexuality in 10th grade co-ed students in Seoul, Korea in order to construct practical curriculum for sex education for youth. Method: One-hour class per week was done to the 3 classes among 6 classes for Spring semester in 1999: small group discussion(for 3 classes) & questionnaires(6 classes) were taken. Results: Despite the increased number of sex education programs, peers apparently remain the major source of information and the counselor of their sexual problems. The rate of correct answer of the sex knowledge is still low, especially on biological aspects of opposite sex. Western culture and women's movements have changed our society. In turn, sexual sterotypes and roles have been changing. Small group discussions were taken after the classes of pregnancy, abortion and unmarried parents. Their opinions on maintaining virginity were collected. The condition of choosing spouse and boy/girl friend is quite different in many aspects.

  • PDF

A Study on the Development of Clinical Workstation (임상용 워크스테이션의 개발에 관한 연구)

  • Park, Kwang-Seok;Lee, Tae-Su;Min, Byeong-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.141-146
    • /
    • 1990
  • A clinical workstation has been developed for the use in clinical ward. This system is connected to the Picture Archiving and Communication System previously installed. It provides the capabilities of image display, image processing, diagnostic report review, clinical lab data review and analytic diagrams presentation for the hospitalized patients in clinical ward. The performances of this system were evaluated during the 9 months. These results show typical aspects of clinical patterns in data transmissions, image studies and clinical lab data studies. These typical aspects should be counted in the further development of workstation for the clinical use.

  • PDF

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Prasad, Renuka;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.577-588
    • /
    • 2019
  • DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Grid-based Biological Data Mining using Dynamic Load Balancing (동적 로드 밸런싱을 이용한 그리드 기반의 생물학 데이터 마이닝)

  • Ma, Yong-Beom;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.81-89
    • /
    • 2010
  • Biological data mining has been noticed as an issue as the volume of biological data is increasing extremely. Grid technology can share and utilize computing data and resources. In this paper, we propose a hybrid system that combines biological data mining with grid technology. Especially, we propose a decision range adjustment algorithm for processing efficiency of biological data mining. We obtain a reliable data mining recognition rate automatically and rapidly through this algorithm. And communication loads and resource allocation are key issues in grid environment because the resources are geographically distributed and interacted with themselves. Therefore, we propose a dynamic load balancing algorithm and apply it to the grid-based biological data mining method. For performance evaluation, we measure average processing time, average communication time, and average resource utilization. Experimental results show that this method provides many advantages in aspects of processing time and cost.

Autophagy-Is it a preferred route for lifespan extension?

  • Dwivedi, Meenakshi;Ahnn, Joo-Hong
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.65-71
    • /
    • 2009
  • Autophagy, which is a process of self eating, has gained interest in the past decade due to its both beneficial and controversial roles in various biological phenomena. The discovery of autophagy genes (ATG) in yeast has led to focused research designed to elucidate the mechanism and regulation of this process. The role of autophagy in a variety of biological phenomena, including human disease, is still the subject of debate. However, recent findings suggest that autophagy is a highly regulated process with both beneficial and negative effects. Indeed, studies conducted using various model organisms have demonstrated that increased autophagy leads to an extended lifespan. Despite these findings, it is still unknown if all pathways leading to extended lifespan converge at the process of autophagy or not. Here, an overview of modern developments related to the process of autophagy, its regulation and the molecular machinery involved is presented. In addition, this review focuses on one of the beneficial aspects of autophagy, its role in lifespan regulation.

Neuroglial Cells and Schizophrenia (신경아교세포와 조현병)

  • Won, Seunghee
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.