• Title/Summary/Keyword: Biological aspects

Search Result 436, Processing Time 0.028 seconds

Non-coding RNAs Associated with Biotic and Abiotic Stresses in Plants

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Muk;Koo, Bon-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Many of biochemical or physiological processes can be regulated by non-coding RNAs as well as coding RNAs in plants, animals and microbes. Recently, many small RNAs including microRNAs (miRNAs) and endogenous small interference RNAs (siRNAs) and long non-coding RNAs have been discovered from ubiquitous organisms including plants. Biotic and abiotic stresses are main causal agents of crop losses all over the world. Much efforts have been performed for understanding the complex mechanism of stress responses. Up to date, many of these researches have been related with the identification and investigation of stress-related proteins, showing limitation to resolve the complex mechanism. Recently, non-coding RNAs as well as coding genes have been gradually interested because of its potential roles in plant stress responses as well as other biophysical aspects. In this review, various potential roles of non-coding RNAs, especially miRNAs and siRNAs, are reviewed in relation with plant biotic and abiotic stresses.

The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

  • Park, Yeong-Chul;Lee, Sundong;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

Analysis on the Building System Integration Methods of the Salk Institute for Biological Studies (솔크 생물학 연구소에 적용된 건물시스템 통합기법 분석에 관한 연구)

  • Choi, Joon Sung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.59-68
    • /
    • 2018
  • Salk Institute for Biological studies is widely considered as architectural masterpiece of Louis Kahn's. Its iconic plaza with symmetrical concrete structures, overlooking the Pacific ocean in La Jolla, has been acclaimed as a facade to the sky. Little has been written on Kahn's achievements in the building system integration in order to bridge the gap between technology and design. This paper explores the technical issues, the design intents, and the major building systems to identify the Kahn's integration methods between building systems. The project is analysed into four major systems; structure, mechanical, envelope, and interior system. The integration methods of building systems are investigated in physical, visual, and functional aspects. The most distinguished cases of building system integration are the introduction of the interstitial floors between the laboratories and the creation of the smooth and warm materiality of exposed concrete walls. Kahn proposed open floor plans for the laboratories which are capable of easily adapting to changing needs. He also introduced the interstitial floors which are framed of the vierendeel truss systems and deliberately overlapped the structure systems with the mechanical systems such as ducts, water pipes, and electric conduits. The exposed concrete walls mixed with pozzolan ashes look very much like granite or limestone as the result of the physical and visual integration between structure, envelope, and interior systems.

Feeding behaviors of a sea urchin, Mesocentrotus nudus, on six common seaweeds from the east coast of Korea

  • Yang, Kwon Mo;Jeon, Byung Hee;Kim, Hyung Geun;Kim, Jeong Ha
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.51-60
    • /
    • 2021
  • The sea urchin, Mesocentrotus nudus, is widely distributed in North West Pacific regions. It has a substantial impact on macroalgal communities as a generalist herbivore. This study examined various aspects of its feeding ecology, including algal preference, foraging behaviors, and possible effects of past feeding history on its algal preference. We used six common algal species (Ulva australis, Undaria pinnatifida, Sargassum confusum, Dictyopteris divaricata, Grateloupia elliptica, and Grateloupia angusta) from the east coast of Korea as food choice in a series of indoor aquarium experiments. The first choice of starved M. nudus was exclusively U. pinnatifida, followed by G. elliptica and S. confusum. Unlike large urchins, small urchins equally preferred U. pinnatifida and G. elliptica. On the other hand, Undaria-fed urchins preferred to feed only G. elliptica, although its preference slightly differed over time. We then grouped sea urchins into three categories (starved, Undaria-fed, mixed species-fed) to observe 12-days feeding preference as well as early foraging movements. Foraging behaviors of the three groups were distinctively different, although they could not completely reflect the actual consumption. For example, U. australis was highly attractive, but rarely eaten. Undaria-fed urchins seemed to stay with only S. confusum and U. australis. This study demonstrates that M. nudus shows high flexibility in food preference depending on past feeding history and body size. Its foraging behaviors are also affected by past feeding conditions, exhibiting active chemoreceptive movements.

A biobehavioral theoretical framework based on the mechanism of cellular aging for nursing interventions to promote autonomic balance (자율신경균형 증진 간호중재를 위한 생행동적 이론적 기틀 구축: 세포노화 기전 기반으로)

  • Nahyun Kim;Jooyeon Park
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Purpose: This study reviewed the pathophysiological mechanisms of cellular aging caused by psychological stress and aimed to establish a biobehavioral theoretical framework for nursing interventions to promote autonomic balance based on these mechanisms. Methods: A comprehensive literature review was conducted. Results: A review of the literature showed that the stress response increases the secretion of catecholamines and glucocorticoids, resulting in a greater allostatic load. This load induces inflammatory reactions and oxidative stress, shortening telomere length and damaging mitochondrial DNA, which can lead to cellular aging. Based on this mechanism, a biobehavioral theoretical framework for nursing interventions was established. This framework focuses on delaying or inhibiting the cellular aging process by acting on the stress response stage and improving autonomic balance. Conclusion: According to the proposed biobehavioral theoretical framework, stress-relieving nursing interventions may act on the mechanism of cellular aging caused by stress responses. We believe that this framework could expand our understanding of the biobehavioral aspects of stress and would facilitate efforts to use biomarkers to evaluate the effectiveness of stress-related nursing interventions at the cellular level.

Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids

  • Ju-Hyun Lee;Mohammed R. Shaker;Si-Hyung Park;Woong Sun
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.

Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains (CoQ10 생성 세균의 선별 및 발효조건 최적화)

  • Jeong, Keun-Il;Kang, Won-Hwa;Lee, Jung-Ah;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Young;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

BIOLOGICAL STUDIES IN CHILD AND ADOLESCENT DEPRESSION (소아 ${\cdot}$ 청소년 우울장애의 생물학적 연구)

  • Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • Research on biological aspects on adult depression has been subjected to more than 25 years of systematic research, while biologic investigations regarding childhood and adolescent depression are only now being initiated. Although no unifying, explanatory theory of the biologic etiology of childhood depression emerges from the results of studies reviewed above, the findings do support that biological factors may be involved in the genesis of childhood depression. The research reviewed in this paper suggests that age and pubertal factors have major effects in most biological markers of depression. Some of these markers, like sleep EEG and neuroendocrine markers should be broken down by decades during adult life span. Thus, although adult data are very valuable points of departure for biological research on child and adolescent depression, it is very hard to transfer the adult data to prepubertal children and adolescents, ignoring the biological changes that take place in growth and development, pubety and aging. A great deal of work in basic developmental neuroscience remains to be done. It will be crucial for further advances in this field to determine the normal patterns of neurotransmitter interaction in this age group and to study children at high risk for depression. It will be also crucial to use primate models of depressive illness in order to be able to answer the many queations that cannot be investigated in humans for ethical issues. Conclusively, much closer collaboration between developmental and neurobiological and behavioral studies in primates and in humans will be essential for further development.

  • PDF

Microarray Data Analysis of Perturbed Pathways in Breast Cancer Tissues

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.210-222
    • /
    • 2008
  • Due to the polygenic nature of cancer, it is believed that breast cancer is caused by the perturbation of multiple genes and their complex interactions, which contribute to the wide aspects of disease phenotypes. A systems biology approach for the identification of subnetworks of interconnected genes as functional modules is required to understand the complex nature of diseases such as breast cancer. In this study, we apply a 3-step strategy for the interpretation of microarray data, focusing on identifying significantly perturbed metabolic pathways rather than analyzing a large amount of overexpressed and underexpressed individual genes. The selected pathways are considered to be dysregulated functional modules that putatively contribute to the progression of disease. The subnetwork of protein-protein interactions for these dysregulated pathways are constructed for further detailed analysis. We evaluated the method by analyzing microarray datasets of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Using the strategy of microarray analysis, we selected several significantly perturbed pathways that are implicated in the regulation of progression of breast cancers, including the extracellular matrix-receptor interaction pathway and the focal adhesion pathway. Moreover, these selected pathways include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting interesting perturbed pathways that putatively play a role in the progression of breast cancer and provides an improved interpretability of networks of protein-protein interactions.

Stream Classification Based on the Ecological Characteristics for Effective Stream Management - In the Case of Nakdong River - (효율적인 하천관리를 위한 하천생태 특성을 고려한 유형 분류 - 낙동강수계를 대상으로 -)

  • Lee, Yoo-Kyoung;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.103-114
    • /
    • 2012
  • The purpose of this research is classifying stream into different types depending on various factor from the perspective of stream corridor restoration and using it as basic data, which are used to consider efficient management and planning for the healthy stream according to the characteristic by types. In this study, 130 points of location of the Nakdong river basin which consist of various geographic factors have been chosen and hierarchical cluster analysis has been carried out in these points by using biological and physiochemical factors whose health can be considered to be predicted and evaluated. As a result of cluster analysis, there were three divided types. Type A whose biology and water quality are considered the best was the highest in forest area percentage so that it was classified into natural stream. Type B was classified into a rural region stream with a mixture of urban and agricultural region. Type C, with the most damaged water quality and biology health had the most urban region surface area and was named as urban region stream. Moreover, an overall restoration strategy according to characteristic by stream types was set. By the results of correlation analysis on factors, water quality showed a high correlation with biological properties and was affected by surrounding land usage. In evaluation of streams, it proves the need to consider not only other habitat's geographical and biological factors but also the water quality and land usage factors. There needs to be further research on stream ecosystem functionality factors and structural aspects by using a more objective and total evaluation result in selecting additional index and various other specific classification methods by stream types and its restoration strategies.