DOI QR코드

DOI QR Code

Microarray Data Analysis of Perturbed Pathways in Breast Cancer Tissues

  • Kim, Chang-Sik (Department of Biological Sciences, Research Center for Women's Diseases (RCWD), Sookmyung Women's University) ;
  • Choi, Ji-Won (Department of Biological Sciences, Research Center for Women's Diseases (RCWD), Sookmyung Women's University) ;
  • Yoon, Suk-Joon (Department of Biological Sciences, Research Center for Women's Diseases (RCWD), Sookmyung Women's University)
  • Published : 2008.12.31

Abstract

Due to the polygenic nature of cancer, it is believed that breast cancer is caused by the perturbation of multiple genes and their complex interactions, which contribute to the wide aspects of disease phenotypes. A systems biology approach for the identification of subnetworks of interconnected genes as functional modules is required to understand the complex nature of diseases such as breast cancer. In this study, we apply a 3-step strategy for the interpretation of microarray data, focusing on identifying significantly perturbed metabolic pathways rather than analyzing a large amount of overexpressed and underexpressed individual genes. The selected pathways are considered to be dysregulated functional modules that putatively contribute to the progression of disease. The subnetwork of protein-protein interactions for these dysregulated pathways are constructed for further detailed analysis. We evaluated the method by analyzing microarray datasets of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Using the strategy of microarray analysis, we selected several significantly perturbed pathways that are implicated in the regulation of progression of breast cancers, including the extracellular matrix-receptor interaction pathway and the focal adhesion pathway. Moreover, these selected pathways include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting interesting perturbed pathways that putatively play a role in the progression of breast cancer and provides an improved interpretability of networks of protein-protein interactions.

Keywords

References

  1. Barsky, S.H., Rao, C.N., Grotendorst, G.R., and Liotta, L.A. (1982). Increased content of Type V Collagen in desmoplasia of human breast carcinoma. Am. J. Pathol. 108, 276-283
  2. Beer, D.G., Kardia, S.L., Huang, C.C., et al. (2002). Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816-824 https://doi.org/10.1038/nm733
  3. Behmoaram, E., Bijian, K., Jie, S., Xu, Y., Darnel, A., Bismar, T.A., and Alaoui-Jamali, M.A. (2008). Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. American Journal of Pathology 173, 1540-1550 https://doi.org/10.2353/ajpath.2008.080292
  4. Chen, J., and Yuan, B. (2006). Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22, 2283-2290 https://doi.org/10.1093/bioinformatics/btl370
  5. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Molecular Systems Biology 3, 140
  6. Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822-826 https://doi.org/10.1038/35090585
  7. Fata, J.E., Werb, Z., and Bissell, M.J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 6, 1-11 https://doi.org/10.1186/bcr820
  8. Fukuda, Y., Ishizaki, M., Okada, Y., Seiki, M., and Yamanaka, N. (2000). Matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in fetal rabbit lung. Am. J. Physiol. Lung Cell Mol. Physiol. 279, 555-561 https://doi.org/10.1152/ajplung.2000.279.3.L555
  9. Glinsky, G.V., Glinskii, A.B., Stephenson, A.J., Hoffman, R.M., and Gerald, W.L. (2004). Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113, 913-923 https://doi.org/10.1172/JCI20032
  10. Grosu, P., Townsend, J.P., Hartl, D.L., and Cavalieri, D. (2008). Pathway processor: a tool for integrating wholegenome expression results into metabolic networks. Genome Research 12, 1121-1126 https://doi.org/10.1101/gr.226602
  11. Hawighorst, T., Velasco, P., Streit, M., Hong, Y.K., Kyriakides, T.R., Brown, L.R., Bornstein, P., and Detmar, M. (2001). Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism. The EMBO Journal 20, 2631-2640 https://doi.org/10.1093/emboj/20.11.2631
  12. Hwang, S., Son, S.W., Kim, S.C., Kim, Y.J., Jeong, H., and Lee, D. (2008). A protein interaction network associated with asthma. Journal of Theoretical Biology 252, 722-731 https://doi.org/10.1016/j.jtbi.2008.02.011
  13. Lagace, R., Grimaud, J.A., Schurch, W., and Seemayer, T.A. (1985). Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch. A. Pathol. Anat. Histopathol. 408, 49-59 https://doi.org/10.1007/BF00739962
  14. Lin, V.C., Ng, E.H., Aw, S.E., Tan, M.G., Ng, E.H., and Bay, B.H. (2000). Progesterone Induces Focal Adhesion in Breast Cancer Cells MDA-MB-231 Transfected with progesterone receptor complementary DNA. Molecular Endocrinology 14, 348-358 https://doi.org/10.1210/me.14.3.348
  15. Lochter, A., and Bissell, M.J. (1995). Involvement of extracellular matrix constituents in breast cancer. Semin. Cancer Biol. 6, 165-173 https://doi.org/10.1006/scbi.1995.0017
  16. Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V., Muthusamy, B., Gandhi, T.K., Chandrika, K.N., Deshpande, N., Suresh, S., Rashmi, B.P., Shanker, K., Padma, N., Niranjan, V., Harsha, H.C., Talreja, N., Vrushabendra, B.M., Ramya, M.A., Yatish, A.J., Joy, M., Shivashankar, H.N., Kavitha, M.P., Menezes, M., Choudhury, D.R., Ghosh, N., Saravana, R., Chandran, S., Mohan, S., Jonnalagadda, C.K., Prasad, C.K., Kumar-Sinha, C., Deshpande, K.S., and Pandey, A. (2004). Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497- D501 https://doi.org/10.1093/nar/gkh070
  17. Petersen, O.W., Lind, N.H., Gudjonsson, T., Villadsen, R., Ronnov-Jessen, L., and Bissell, M.J. (2001). The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res. 3, 213-217 https://doi.org/10.1186/bcr298
  18. Potikyan, G., Savene, O.V., Gaulden, J.M., France, K.A., Zhou, Z., Kleinerman, E.S., Lessnick, S.L., and Denny, C.T. (2007). EWS/FLI1 regulates tumor angiogenesis in Ewing's sarcoma via suppression of thrombospondins. Cancer Research 67, 6675-6684 https://doi.org/10.1158/0008-5472.CAN-06-4140
  19. Romashkova, J.A., and Makarov, S.S. (1999). NF-kappa-B is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86-90 https://doi.org/10.1038/43474
  20. Ryan, K.M., Ernst, M.K., Rice, N.R., and Vousden, K.H. (2000). Role of NF-kappa-B in p53-mediated programmed cell death. Nature 404, 892-897 https://doi.org/10.1038/35009130
  21. Setlur, S.R., Royce, T.E., Sboner, A., Mosquera, J.M., Demichelis, F., Hofer, M.D., Mertz, K.D., Gerstein, M., and Rubin, M.A. (2007). Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res. 67, 10296-10303 https://doi.org/10.1158/0008-5472.CAN-07-2173
  22. Thompson, E.W., Yu, M., Bueno, J., Jin, L., Maiti, S.N., Palao-Marco, F.L., Pulyaeva, H., Tamborlane, J.W., Tirgari, R., Wapnir, I., et al. (1994). Collagen induced MMP-2 activation in human breast cancer. Breast Cancer Res. Treat. 31, 357-370 https://doi.org/10.1007/BF00666168
  23. Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., et al. (2007). Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55 https://doi.org/10.1186/1471-2407-7-55
  24. van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., Parrish, M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E.T., Friend, S.H., and Bernards, R. (2002). A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999-2009 https://doi.org/10.1056/NEJMoa021967
  25. van't Veer, L.J., Dai, H., van de Vijver, M.J., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536 https://doi.org/10.1038/415530a
  26. van't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Bernards, R., and Friend, S.H. (2002). Expression profiling predicts outcome in breast cancer. Breast Cancer Res. 5, 57-58 https://doi.org/10.1186/bcr562
  27. Wang, W., Wyckoff, J.B., Frohlich, V.C., Oleynikov, Y., Huttelmaier, S., Zavadil, J., Cermak, L., Bottinger, E.P., Singer, R.H., White, J.G., Segall, J.E., and Condeelis, J.S. (2002). Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278-6288
  28. Wetzels, R.H., Robben, H.C., Leigh, I.M., Schaafsma, H.E., Vooijs, G.P., and Ramaekers, F.C. (1991). Distribution patterns of type VII collagen in normal and malignant human tissues. Am. J. Pathol. 139, 451-459

Cited by

  1. IdMapper: A Java Application for ID Mapping across Multiple Cross-referencing Providers vol.7, pp.4, 2009, https://doi.org/10.5808/GI.2009.7.4.208