DOI QR코드

DOI QR Code

Biological Pathway Extension Using Microarray Gene Expression Data

  • Chung, Tae-Su (Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine) ;
  • Kim, Ji-Hun (Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine) ;
  • Kim, Kee-Won (Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine) ;
  • Kim, Ju-Han (Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine)
  • Published : 2008.12.31

Abstract

Biological pathways are known as collections of knowledge of certain biological processes. Although knowledge about a pathway is quite significant to further analysis, it covers only tiny portion of genes that exists. In this paper, we suggest a model to extend each individual pathway using a microarray expression data based on the known knowledge about the pathway. We take the Rosetta compendium dataset to extend pathways of Saccharomyces cerevisiae obtained from KEGG (Kyoto Encyclopedia of genes and genomes) database. Before applying our model, we verify the underlying assumption that microarray data reflect the interactive knowledge from pathway, and we evaluate our scoring system by introducing performance function. In the last step, we validate proposed candidates with the help of another type of biological information. We introduced a pathway extending model using its intrinsic structure and microarray expression data. The model provides the suitable candidate genes for each single biological pathway to extend it.

Keywords

References

  1. Bogatti, S.P., and Everett, M.G. (1997). Network analysis of 2-mode data. Social Networks 19, 243-269 https://doi.org/10.1016/S0378-8733(96)00301-2
  2. Chartrand, G., Kubicki, G., and Schultz, M. (1988). Graph similarity and distance in graphs. Aequationes Math. 55, 129-145 https://doi.org/10.1007/s000100050025
  3. Dudoit, S., Yang, Y.H., Gallow, M.J., and Speed, T.P. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica. 12, 111-139
  4. Faust, K. (1997). Centrality in affiliation networks. Social Networks 19, 157-191 https://doi.org/10.1016/S0378-8733(96)00300-0
  5. Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian Network to Analyze Expression Data. Journal of Computational Biology 7, 601-620 https://doi.org/10.1089/106652700750050961
  6. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemarker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend, S.H. (2000). Functional discovery via a compendium of expression profiles. Cell 102, 109-126 https://doi.org/10.1016/S0092-8674(00)00015-5
  7. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J. Jr., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D., and Brown, P.O. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83-87 https://doi.org/10.1126/science.283.5398.83
  8. eong, H., Mason, S.P., Barabasi, A.L., and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature 6833, 41-2
  9. Kanehisa, M. (1996). Toward pathway engineering: a new database of genetic and molecular pathways. Science & Technology Japan 59, 34-38
  10. Kharchenko, P., Vitkuo, D., and Church, G.M. (2004). Filling gaps in a metabolic networks using expression information. Bioinformatics 20 (Suppl. 1), i178-i185 https://doi.org/10.1093/bioinformatics/bth930
  11. Tusher, V.G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 98, 5116-5121 https://doi.org/10.1073/pnas.091062498
  12. Yamanishi, Y., Vert, J.P., Nakaya, A., and Kanehisa, M. (2004). Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20 (Supple. 1), i363-i370 https://doi.org/10.1093/bioinformatics/bth910