References
- Evans, T.J. (2013) Small Animal Toxicology (Third Edition), Chapter 2 - Toxicokinetics and Toxicodynamics, Elsevier Publishing Company, pp. 13-19.
- Nagarkatti, P.S. and Nagarkatti, M. (1987) Immunotoxicology: Modulation of the immune system by xenobiotics. Def. Sci. J., 37, 235-244. https://doi.org/10.14429/dsj.37.5904
- Borzelleca, J.F. (2000) Profiles in toxicology. Paracelsus: herald of modern toxicology. Toxicol. Sci., 53, 2-4. https://doi.org/10.1093/toxsci/53.1.2
- International Agency for Research on cancer (IARC) Monograph. (2014) Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs. 1, 109.
- Betharia, S., Corcoran, G.B. and Ray, S.D. (2014) Mechanisms of Toxicity: In Encyclopedia of Toxicology (3rd Ed), Elsevier Publishing Company, pp. 165-175.
- Liska, D.J., Lyon, M. and Jones, D.S. (2006) Detoxification and biotransformation imbalance, Explore, 2, pp. 112-140.
- Gregus, Z. and Klaassen, C.D. (2008) Casarett & Doull's Toxicology (7th ed), The Basic Science of Poisons, Unit 1: Basic principle of toxicology, Chapter 3: mechanisms of toxicity, MC GRAW Hill, pp. 35-81.
- Attia, S.M. (2010) Deleterious effects of reactive metabolites. Oxid. Med. Cell. Longevity, 3, 238-253. https://doi.org/10.4161/oxim.3.4.13246
- Wells, P.G., Bhullera, Y., Chen, C.S., Jeng, W., Kasapinovic, S., Kennedy, J.C., Kim, P.M., Laposa, R.R., McCallum, G.P., Nicol, C.J., Parman, T., Wiley, M.J. and Wong, A.W. (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol. Appl. Pharmacol., 207, 354-366. https://doi.org/10.1016/j.taap.2005.01.061
- Park, Y.C. (2010) The molecular and biochemical principles of toxicology. Korean studies Information Publishing Company, Korea, pp. 19-24.
- Kumar, V., Abba, A.K. and Aster, J.C. (2012) Robbins Basic Pathology (7th Edition), Elsevier, pp. 199-200.
- Working, P.K. (1989) Mechanistic Approaches in the Study of Testicular Toxicity: Agents that Directly Affect the Testis. Toxicol. Pathol., 17, 452-456. https://doi.org/10.1177/019262338901700221
- Ashauer, R., Hintermeister, A., O'Connor, I., Elumelu, M., Hollender, J. and Escher, B.I. (2012) Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in gammarus pulex. Environ. Sci. Technol., 46, 3498-3508. https://doi.org/10.1021/es204611h
- Liska, D.J. (1998) The Detoxification Enzyme Systems. Altern. Med. Rev., 3. 187-198.
- Kumar, G.N. and Surapaneni, S. (2001) Role of drug metabolism in drug discovery and development. Med. Res. Rev., 21, 397-411. https://doi.org/10.1002/med.1016
- Schroer, K., Kittelmann, M. and Lutz, S. (2010) Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnol. Bioeng., 106, 699-706. https://doi.org/10.1002/bit.22775
- Guengerich, F.P. (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J., 8, E101-E111. https://doi.org/10.1208/aapsj080112
- Zanger, U.M. and Schwab, M. (2013) Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 138, 103-141. https://doi.org/10.1016/j.pharmthera.2012.12.007
- Orhan, H. and Vermeulen, N.P. (2011) Conventional and novel approaches in generating and characterization of reactive intermediates from drugs/drug candidates. Curr. Drug Metab., 12, 383-394. https://doi.org/10.2174/138920011795202974
- Bertz, R.J. and Granneman, G.R. (1997) Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet., 32, 210-258. https://doi.org/10.2165/00003088-199732030-00004
- Yan, Z. and Caldwell, G.W. (2001) Metabolic profiling, and cytochrome P450 inhibition &induction in drug discovery. Curr. Top. Med. Chem., 1, 403-425. https://doi.org/10.2174/1568026013395001
- Srivastava, A., Maggs, J.L., Antoine, D.J., Williams, D.P., Smith, D.A. and Park, B.K. (2010) Role of reactive metabolites in drug-induced hepatotoxicity. Handb. Exp. Pharmacol., 196, 165-194. https://doi.org/10.1007/978-3-642-00663-0_7
- Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G. and Monks, T.J. (2000) Role of quinones in toxicology. Chem. Res. Toxicol., 13, 135-160. https://doi.org/10.1021/tx9902082
- Lopachin, R.M. and Decaprio, A.P. (2005) Protein Adduct Formation as a Molecular Mechanism in Neurotoxicity. Toxicol. Sci., 86, 214-225. https://doi.org/10.1093/toxsci/kfi197
- Nioi, P. and Hayes, J.D. (2004) Contribution of NAD(P)H: quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loophelix transcription factors. Mutat. Res., 555, 149-171. https://doi.org/10.1016/j.mrfmmm.2004.05.023
- Guengerich, F.P. (1992) Metabolic activation of carcinogens. Pharmacol. Ther., 54, 17-61. https://doi.org/10.1016/0163-7258(92)90050-A
- Goetz, M.E. and Luch, A. (2008) Reactive species: A cell damaging rout assisting to chemical carcinogens. Cancer Lett., 266, 73-83. https://doi.org/10.1016/j.canlet.2008.02.035
- Gram, T.G. (1997) Chemically reactive intermediates and pulmonary xenobiotic toxicity. Pharmacol. Rev., 49, 297-341.
- Tolando, R., Zanovello, A., Ferrara, R., Iley, J.N. and Manno, M. (2001) Inactivation of rat liver cytochrome P450 (P450) by N,N-dimethylformamide and N,N-dimethylacetamide. Toxicol. Lett., 124, 101-111. https://doi.org/10.1016/S0378-4274(01)00384-8
- Well, P.G., Kim, P.M., Nicol, C.J., Parman, T. and Winn, LM. (1997) Drug Toxicity in Embryonic Development I; Reactive Intermediates. Springer Berlin Heidelberg Publishing Company, 124, 453-518.
- Gold, B., Marky, L.M., Stone, M.P. and Williams, L.D. (2006) A review of the role of the sequence-dependent electrostatic landscape in DNA Aakylation patterns. Chem. Res. Toxicol., 19, 1402-1414. https://doi.org/10.1021/tx060127n
- Shu, Y.Z., Johnson, B.M. and Yang, T.J. (2008) Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS J., 10, 178-192. https://doi.org/10.1208/s12248-008-9016-9
- van Bladeren, P.J. (2000) Glutathione conjugation as a bioactivation reaction. Chem. Biol. Interact., 129, 61-76. https://doi.org/10.1016/S0009-2797(00)00214-3
- Masubuchi, N., Makino, C. and Murayama, N. (2007) Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans. Chem. Res. Toxicol., 20, 455-464. https://doi.org/10.1021/tx060234h
- Djurovic, J. (2012) Biotransformation of the toxic chemical substances. Math. Models Methods Appl. Sci., 91-95.
- Smith, M.T., Yager, J.W., Steinmetz, K.L. and Eastmondt, D.A. (1989) Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ. Health Perspect., 82, 23-29. https://doi.org/10.1289/ehp.898223
- Glatt, H. (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem. Biol. Interact., 129, 141-170. https://doi.org/10.1016/S0009-2797(00)00202-7
- Guengerich, F.P. and Shimada T. (1998) Activation of procarcinogens by human cytochrome P450 enzymes. Mutat. Res., 400, 201-213. https://doi.org/10.1016/S0027-5107(98)00037-2
- Ashauer, R. and Escher, B.I. (2010) Advantages of toxicokinetic and toxicodynamic modeling in aquatic ecotoxicology and risk assessment. J. Environ. Monit., 12, 2056-2061. https://doi.org/10.1039/c0em00234h
- Crick, F. (1970) Central dogma of molecular biology. Nature, 227, 561-563. https://doi.org/10.1038/227561a0
- Thieffry, D. and Sarkar, S. (1998) Forty years under the central dogma. Trends Biochem. Sci., 23, 312-316. https://doi.org/10.1016/S0968-0004(98)01244-4
- Mattick, J.S. (2004) The hidden genetic program of complex organisms. Sci. Am., 291, 60-67. https://doi.org/10.1038/scientificamerican1004-60
Cited by
- Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae vol.24, pp.16, 2017, https://doi.org/10.1007/s11356-017-8966-9