• Title/Summary/Keyword: Biological Signals

검색결과 588건 처리시간 0.021초

A Study for the Analysis of EEG Signals Evoked by Auditory Stimulus using Wavelet Transformations (Wavelet변환을 이용한 청각자극에 의해 유발되는 뇌파의 분석에 관한 연구)

  • Kim, J.H.;Yoo, I.H.;Shin, J.W.;Im, J.J.;Whang, M.C.;Kim, C.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.233-236
    • /
    • 1996
  • We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately, there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Twenty subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signals. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to estabilish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.

  • PDF

Pilot Test of Electrocardiogram Measurement Method for Conductive Textiles Electrode Position in Bed Condition (침대 형태에서 기능성 직물 전도성 전극 위치에 대한 심전도 측정 방법의 Pilot Test)

  • Jun won, Choi;Lina A., Asante;Chang Hyun, Song;Halim, Chung;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.80-84
    • /
    • 2023
  • Electrodes are one of the types of biosensors capable of measuring bio signals, such as electrocardiogram (ECG) and electromyogram (EMG) signals. These electrodes are used in various fields and offer the advantage of being able to measure ECG signals without the need for skin attachment, compared to Ag/AgCl electrodes. The purpose of this study was to evaluate the efficacy of conductive textile electrodes in collecting ECG signals in a bed-like environment. Three adult participants were involved, and a total of 30 minutes of ECG signals were collected for each participant. The collected ECG signals were analyzed to determine the heart rate, normLF and a comparison was made between the conductive textile electrodes and Ag/AgCl electrodes. As a result, the change in heart rate and normLF could be observed, and in particular, the difference between the two electrodes decreased. This study confirmed that conductive textile electrodes can effectively collect ECG signals in a bed-like environment. It is hoped that this research will lead to the development of a system that can detect various sleep-related diseases through the use of these electrodes.

Ultrasound Harmonic Imaging Method based on Harmonic Quadrature Demodulation (하모닉 직교 방식의 초음파 고조파 영상화 기법)

  • Kim, Sang-Min;Song, Jae-Hee;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • 제30권1호
    • /
    • pp.79-88
    • /
    • 2009
  • A harmonic quadrature demodulation method to extract the second harmonic component from focused ultrasound signals after a single transmit-receive event is proposed. In the proposed method, the focused ultrasound signal is converted into baseband inphase and quadrature components by multiplying with sine and cosine signals both having twice the center frequency of the transmitted signal and filtering the two modulated signals. The quadrature component is then passed through a Hilbert filter to be added to the inphase component, which leaves only the envelope of the second harmonic component. A novel phase estimation technique is employed in the proposed method to avoid the phase mismatch between the focused signal and the two modulating signals. The proposed method is verified through both theoretical analysis and computer simulations. It is shown that compared to the pulse inversion scheme the proposed method provides almost the same results for stationary targets and significantly improved harmonic to fundamental ratio for moving targets.

Development of Sleep-disordered Breathing Detection System using Air-mattress and Pulse Oximeter (에어 매트리스와 산소 포화도 측정기를 이용한 수면호흡장애 자동 검출 시스템 개발)

  • Jeong, Pil-Soo;Park, Jong-Uk;Joo, Eun-Youn;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • 제38권4호
    • /
    • pp.153-162
    • /
    • 2017
  • The present study proposes a system that can detect sleep-disordered breathing automatically using an air mattress and oxygen saturation. A thin air mattress was fabricated to reduce discomfort during sleep, and respiration signals were acquired. The system was configured to be synchronized with a polysomnography to receive signals simultaneously with other bio-signals. The present study has been conducted with nine adult male and female patients with sleep-disordered breathing, and sleep-disordered breathing events have been detected by applying the signals acquired from the subjects to the rule-based detection algorithm. The sensitivity and positive predictive values were found to evaluate the performance of the system, which are 91.4% and 89.7% for all events, respectively. The comparison of apnea hypopnea index(AHI) between the polysomnography and the proposed method showed squared R-value of 0.9. This study presents the possibility of detecting sleep-disordered breathing at hospitals or homes using the proposed system.

Development of a Control Strategy for a Multifunctional Myoelectric Prosthesis

  • Kim Seung-Jae;Choi Hwasoon;Youm Youngil
    • Journal of Biomedical Engineering Research
    • /
    • 제26권4호
    • /
    • pp.243-249
    • /
    • 2005
  • The number of people who have lost limbs due to amputation has increased due to various accidents and diseases. Numerous attempts have been made to provide these people with prosthetic devices. These devices are often controlled using myoelectric signals. Although the success of fitting myoelectric signals (EMG) for single device control is apparent, extension of this control to more than one device has been difficult. The lack of success can be attributed to inadequate multifunctional control strategies. Therefore, the objective of this study was to develop multifunctional myoelectric control strategies that can generate a number of output control signals. We demonstrated the feasibility of a neural network classification control method that could generate 12 functions using three EMG channels. The results of evaluating this control strategy suggested that the neural network pattern classification method could be a potential control method to support reliability and convenience in operation. In order to make this artificial neural network control technique a successful control scheme for each amputee who may have different conditions, more investigation of a careful selection of the number of EMG channels, pre-determined contractile motions, and feature values that are estimated from the EMG signals is needed.

A Study on Human Training System for Prosthetic Arm Control (의수제어를 위한 인체학습시스템에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • 제15권4호
    • /
    • pp.465-474
    • /
    • 1994
  • This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.

  • PDF

An analysis of Ultrasound signals using wavelet transform (II) (Wavelets 변환을 이용한 초음파 신호의 분석 (II))

  • Hong, S.W.;Kim, D.J.;Choi, H.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.583-586
    • /
    • 1997
  • In this study, we proposed an application of wavelet transform or analysis of ultrasound echo signals to improve troubles of convenianced methods such as SDM, SSM. We examined method using wavelet transform to prove again our proposal which we have proposed prior time. At first, we made phantoms by adding 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05($g/cm^3$) on constant quantity of distilled water and agar, and collected echo signals. We used SDM(spectral difference method) and WTM(wavelet transform method) as signal processing method. To compare with WTM, SDM was used. In WTM, we selected detail signals of level 3 of Daubechies 16, and got derivative, calculated area of it. Next, we calculated slopes. In SDM, it was 0.0308 and in WTM, it was 0.5248. As a result, we knew that we could know that the values using WTM showed more detailed than those using SDM. So we could concluded wavelet transform is very useful and powerful in ultrasound tissue characterization.

  • PDF

Radiotelemetry for ECG and Event Signals Using FDM (주파수분할 다중방식에 의한 심전신호 및 부가정보신호 무선전송)

  • 이훈규;박동철
    • Journal of Biomedical Engineering Research
    • /
    • 제21권4호
    • /
    • pp.345-351
    • /
    • 2000
  • This study is to dvelop a radiotelemetry system to transmit and receive ECG (electrocardiograph) and event signals by using the frequency division multiplexing(FDM) technique. ECG signal sensed by the electrodes is amplified and added to the event signals acting in different frequency range for lead-off, nurse call and low level battery by using FDM. The sub-carrier oscillator using Colpitts circuits and main carrier frequency which is multiplied is frequency modulated by this superhetrodyne technique, and demodulated from the compose IF signal through the quadrature demodulator. A pulse counter demodulator and filtering circuits extract the original ECG and event signals.

  • PDF

The Velocity Characteristics of the Vertical Saccadic Eye Movement System (수직 Saccadic 안구운동계의 속도 특성)

  • 이용천;박상희
    • Journal of Biomedical Engineering Research
    • /
    • 제4권1호
    • /
    • pp.15-20
    • /
    • 1983
  • In this paper, the velocity characteristics of the vertical saccadic eye movement system with subject-experiment are investigated utilizing the infra-red methed. Especially, target-generation system which produces pseudo-random signals using EPROM 2716 and differentiator whose time constant is 12 msec are developed in hardware.

  • PDF

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.