243

J. Biomed. Eng. Res.
Vol.26, No.4, 243-249, 2005

Development of a Control Strategy for a Multifunctional
Myoelectric Prosthesis

Seung-Jae Kim, Hwasoon Choi, Youngil Youm

Department of Mechanical Engineering, Pohang University of Science and Technology
{Received July 19, 2005. Accepted August 9, 2005)

Abstract: The number of people who have lost limbs due to amputation has increased due to various accidents and diseases.
Numerous attempts have been made to provide these people with prosthetic devices. These devices are often controlled using
myoelectric signals. Although the success of fitting myoelectric signals (EMG) for single device control is apparent, extension of
this control to more than one device has been difficult. The lack of success can be attributed to inadequate muitifunctional
control strategies. Therefore, the objective of this study was to develop multifunctional myoelectric control strategies that can
generate a number of output control signals. We demonstrated the feasibility of a neural network classification control method
that could generate 12 functions using three EMG channels. The results of evaluating this control strategy suggested that the
neural network pattern classification method could be a potential control method to support reliability and convenience in
operation. In order to make this artificial neural network control technique a successful control scheme for each amputee who

may have different conditions, more investigation of a careful selection of the number of EMG channels, pre-determined
contractile motions, and feature values that are estimated from the EMG signals is needed.
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INTRODUCTION

Not only because of congenital defect disorders but
also because of diseases and industrial accidents, the
number of people with limb amputations has been
increasing every year [1]. In order to replace their loss
of function, many attempts have been made to develop
powered prosthetic devices [2], and electromyographic
signals (EMG) from a body’s intact musculature have
been widely used as control signals for those powered
prosthetic devices [3]. Although the success of using
the EMG signal is apparent in some commercial
prosthetic devices[4, 5], these devices are generally
limited to accomplishing rather simple functions such
as finger gripping and hand opening motions. The
obstacles to development of a practical multifunctional
prosthesis has been mainly attributed to difficulties in
implementing a multifunctional EMG control strategy.
In order to control multifunctional prostheses using
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EMG signals, it is necessary to produce more control
outputs. If the number of control outputs per EMG
channel is limited to only one or two as is seen with
conventional EMG control methods, an attempt to
provide more control outputs consequently requires
more channels per EMG signals and more electrodes
located on the various muscle sites are needed.
However, this technique is remarkably impractical for
isolating the required number of contracting muscles
in amputees [6]. In order to overcome such a problem,
many research groups have attempted to extract more
control information from each channel of the EMG
signal or multichannel system, so that that the
number of control outputs can be greater than the
number of EMG channels. Dorcas and Scott proposed
a three-state control method to extract three different
control signals from a single EMG channel [7]. A
statistical analysis of the EMG signals corresponding
to various contractile motions has also been reported
[8, 9] and pattern recognition methods have been
developed based on statistical analysis to identify EMG
signals obtained from the subjects’ musculature [10,
11]. In addition, Hudgins et al. proposed a new
approach to classifying EMG signal patterns using an
artificial neural network [12].

In a previous study using an artificial neural
network as a pattern recognition algorithm, they
demonstrated the capability of classifying four
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contractile motions from the EMG signals recorded
from two EMG channels [12]. This implies that it is
possible to generate four different output functions
using two paired electrodes located on the skin. A more
recent study also used a neural network classifier, and
they demonstrated that they could classify six types of
motion when four EMG channels were used [13].
Although the classification accuracy of their controller
was high, it was affected by the number of EMG
channels; the accuracy was shown to decrease as the
number of EMG channels were decreased. Therefore,
as more output functions are required for controlling
more dexterous prostheses, more EMG channels may
be needed. However, there has always been concern
about how many EMG channels are necessary for
practical use of a multifunctional prosthesis. Therefore,
there is still an obvious motivation to extract more
control information from a single EMG channel or from
a combined multi-EMG channel. In this study, we
employed the previously proposed EMG control scheme
(pattern recognition using an artificial neural network)
with the goal of generating more control outputs than
previous studies using the pattern recognition strategy.
For the purpose of usability of the system, we also
restricted the number of channels of the EMG signal
used in this study to three.

From the results of our study, we reaffirmed the
feasibility of an algorithm using a multifunctional EMG
control method using artificial neural network pattern
recognition and demonstrated that the classification
accuracy of a controller is significantly dependent on
choosing the proper configuration of pre-determined
contractile motions and also on choosing the proper
feature values estimated from the EMG signals.

METHOD

The concept of the control scheme is illustrated in
Figure 1. In this study, we used a three-channel EMG
configuration to extract as many as 12 different control
signals. Subjects contracted their muscles with one of
the 12 pre-classified motions. The 12 classes of arm
motion were defined from all possible simultaneous
combinations of six primitive motions including; arm
depression and elevation, humeral rotation in and out,
and elbow flexion and extension as shown in Figure 2.
The EMG signals produced by muscle contraction
combined with one of the classified motions were fed
into the calculation part of the control scheme. Some
feature values such as variance and integrated
waveform length were calculated and given to the
discrimination part. The discrimination part was
responsible for classifying the features values into one
of the specific patterns that had been initially defined
for each of the 12 classes. The classified patterns were
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then used as specific control signals to actuate
electrically powered prostheses. The neural network
theory, which may be suitable for -classifying
myoelectric signals [14], was chosen as the classifier in
this study. The structure of the neural network used in
our control method was a multiplayer perception feed-
forward network including a single hidden layer. All
the input nodes were connected with the hidden layer,
which was then connected with the output nodes
corresponding to the output pattern classes. The
relationship between inputs and outputs was
strengthened by the neural network’s learning theory.
Upon strengthening the relationship, users would be
able to control a prosthesis by performing a muscle
contraction with one of the defined composite motions.
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Fig. 1. The overall scheme of the control method tested in
this study. When muscles are contracted at one of the 12
pre-classified motions, EMG signals are acquired from three
pairs of electrodes. From the EMG signals, statistical feature
values are calculated. The calculated values are then given
to the inputs of the artificial neural network in the
discrimination part in which desired outputs are classified.
The different classified outputs are used
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Fig. 2. Six primitive motions are illustrated; elbow flexion and
extension, arm depression and elevation, and humeral
rotation in and out. The simultaneous combinations in these
motions result in the 12 composite motions discussed herein.
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Table 1. The 12 classified composite motions are defined from the combination of arm, humeral and elbow primitive motions.

The symbol “o

is marked for each individual active primitive motion required to produce the composite motions listed in the first

column.
Classified Motion Depressio:‘ ~ Elevation Rotate l}:UMERl::;ate Out FIexionELBog:tension
D-E o} o]
D-F o] o
DIF 0 o o]
DOF o] o] o
DIE o] o o)
DOE o] o o
E-E 0 o]
E-F o] o]
EIF o o] o}
EOF o o o}
EIE o] o] o
EOCE o o] o

In our experiments, three differential electrodes
were attached to three distinct muscle sites, which
included the long head of the biceps, triceps, and
deltoid, respectively. The EMG signals were sampled at
10 kHz for 500 milliseconds through an amplifier
{1000 fold gain) [10] with a 60 Hz notch filter and a 5-
1000 Hz band pass filter. Seven male subjects, whose
ages were between 25 and 30, participated in the
evaluation of our control system. For each subject,
EMG signals from three channels were recorded in
response to 12 different composite motions, and each
set was defined as one collected data set. This one set
of collected data was repeated 12 times per subject for
three days and 4 sets of data were recorded each day.
Thus, a total of 12 sets of data were collected from a
single subject. After signal collection was completed,
statistical analysis involving the study of zero crossings,
slope sign changes, integrated waveform length,
variance, and Fast Fourier Transforms were performed
based on the acquired EMG signals. Among these
statistically calculated values, we chose the integrated
waveform length and variance as input features to the
input nodes for the neural network. The integrated

waveform length (IWL equation) was given by
WL =Z\:]AxAk| where, N = the number of
k=1
A A A

samplings, and A Xy = Xr — Xk The variance

N s
equation was given by o} = N;Z (- X ). In
155

addition to IWL and variance, we created one more
feature value (the ranking value) in order to increase
the probability of accurate classification. This value
was also given to the input nodes for the neural
network. The ranking value was set between -1.0 and
1.0 according to the order of magnitude of IWL as
shown in Table 2. For instance, if the IWL value
obtained from the deltoid is greater than those from
any other muscle site, and also if the IWL value from
the triceps is the lowest, the ranking value is
determined as +1.0.

Table 2. The ranking value as determined by the order of
magnitude of IWL. The right three columns show the order of
magnitude of IWL, and the far left column indicates the
ranking value depending on the orders.

he order of magnitude of IWL

The Ranking Value

Biceps Triceps Deltoid
+1.0 2 3 1
+0.6 1 3 2
+0.2 1 2 3
-0.2 2 1 3
-0.6 3 1 2
-1.0 3 2 1

Vol.26, No. 4, 2005
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Because the EMG signals were obtained from three
channels, we calculated three sets of IWL values, three
sets of variance, and one ranking value obtained from
comparison of IWLs from different channels.
Accordingly, the neural network used in this study had
a total of seven input nodes corresponding to inputs of
the three values of IWL and variance respectively, and
the ranking value. Before these values were given to
the nodes” of the neural network, the values were
normalized by linear interpolation so that all the values
were between -1.0 and +1.0. The structure of the
neural network consisted of 12 output nodes
corresponding to the 12 classes of motion patterns and
a single hidden layer containing 30 nodes. The network
was trained using a standard back propagation
algorithm [15]. This algorithm was selected because of
its extensive use in pattern recognition literature and
its reliability. When the number of hidden layers was
less than 20 or greater than 30, pilot testing showed
that the rate of pattern recognition decreased. For the
training, the 12 output values corresponding to each
composite motion were defined as 1.0, and the output
function was written asy = (a, b, ¢, d, e, f, g, h, 1, j, k, |
where a, b, ¢, e, d, f, g, h, i, j, k, and | represent each
classified class respectively. The relationship between

input and output features was written as )7p=fpji

where p is the pattern number (p = 1, ..., 12), jis the
total number of the data set (j = 1, ..., 9), iis the
input node number (i = 1, ..., 7), X ; is the input

o
values, and yp is the desired output values. In order

to end the neural network training stage, the error was
n 12

12
defined as Error = ZZZ|yp —Opjil where yp is

p=l j=l i=l

the desired output value corresponding to the pattern
p, and op;i is the calculated output value given at the
corresponding input value xp;i. The training stage was
successfully terminated when the error value
converged to less than 0.01. The evaluation testing of
our control method was performed according to the
following procedures. For each subject case, the neural
network relationship was strengthened wusing 9
randomly selected data sets from the pool of 12 data
sets. The remaining three data sets were used for
evaluating the performance of the already trained
neural network system. Thus, the rate of correct
pattern recognition was tested three times for each
subject.

RESULTS

The results of the evaluation testing are shown in
Figure 3. The bars and numbers describe the Classifica
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-tion performance (percentage of correct classification
rate). They were averaged over 7 subjects. The average
correct classification rate over 12

classified motions was 64.7% *+ 15.4%. The best
performance (85.7%) was observed in the E-E motion
(arm elevation and elbow extension) while the DOF
(arm depression, humeral rotate out, and elbow

flexion) motion showed the poorest performance
(28.6%).
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EIE 76.2
EOF 161.9
EIF 1714
< -
2 EF 147.6
[} o
> E-E 185.7
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Fig. 3. Classification results for 12 classes.

In order to better characterize the classification
performance associated with contractile motions, we
investigated the incorrectly classified patterns from our
testing. Table 3 shows the incorrect recognition rates
for various cases. For instance, when D-F was given as
the input, the incorrect recognition rate that was
recognized as either DIF or DOF was 4.8% and 23.7%
respectively, and the incorrect recognition rate that
recognized as other classifications was 4.8%. The
incorrect recognition rate, recognized as D-F and DOF
for a given DIF, was 19% and 14.3% respectively, and
the incorrect rate that was recognized as D-F and DIF,
when DOF was given, was 33.3% and 33.3%. The
observation of incorrect classification suggests that the
incorrect recognition induced by the humeral in and
out motions were generally greater than that induced
by other motions, such as arm depression and
elevation or elbow flexion and extension.
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Table 3. Incorrect classification rates for 12 classes. The first column of each table represents the input pattern, and the first row
of each table represents the incorrectly resultant pattern. All values are percentages.

Classified Motion  D-F DIF DOF Other

D-F N/A 4.8 23.7 4.8

DIF 19 N/A 143 14.3 K

DOF 333 333  NA 48
Classified Motion D-E DIE DOE Other

D-E N/A 4.8 23.8 0

DIE A 14.2 N/A 4.8 4.8

DOE 23.8 0 N/A 4.8

Since most errors came from the motion of humeral
in and out, we excluded the humeral in and out
motions from the 12 pre-determined contractile
motions and then performed the evaluation testing.
The overall recognition rate significantly increased up
to 92.0% at the cost of the reduction of the number of
classes from 12 to 4 (Table 4).

Tabled. The correct classification rate using four classes
after the humeral motions were excluded from the contractile
motions that had been initially determined.

Classified Motion % Correct Classification

DF 92.0
DE ‘ 96.8
EF 88.8
EE 90.5
DISCUSSION

The electromyographic signal (EMG) has been a
good candidate for the control of powered upper limb
prostheses. However, it has been a difficult task to
extract a number of control signals from only a few
EMG channels in order to provide more dexterous
control for powered prostheses. Therefore, it is always
desired to produce a greater number of control signals
from the EMG signals. To overcome this problem, an
approach using a neural network pattern recognition
technique has been proposed and studied [12, 13]. In
such an approach, EMG signals are acquired from a
single channel or a few channels at a time for certain
contractile motions that have been initially pre-
determined. Then, a pattern recognition algorithm

Classified Motion - E-F EIF EOF Other
E-F N/A 19 23.8 9.6
EIF 14.3 N/A 9.5 0
EOF 19 4.8 N/A 19.1
Classified Motion E-E EIE EOE Other
E-E N/A 14.3 0 0
EIE 23.8 N/A 0 0
EQE 48 48 N/A 28.5

classifies the contractile motions based on some
feature values calculated from the EMG signals and
generates different control outputs. This, in turn,
allows for control of a prosthetic device according to
different contractile motions. Such a pattern
recognition control scheme has numerous advantages
over the conventional EMG control including the
following: 1) For conventional myoelectric control, the
EMG signal that is detected on the skin through
electrodes must be rectified because the voltage level is
used as a trigger signal like an “on and off” control,
and the voltage level is generally proportional to the
intensity of the muscle contraction. This may cause
muscle fatigune during long-term use. On the other
hand, the pattern recognition control method does not
need to require users to contract their muscles hard
under any circumstances because it only needs some
feature values that can be estimated from raw EMG
signals for classification. 2) Increasing the number of
output control signals is not necessarily limited by the
number of EMG channels (electrodes) attached to the
skin. With the pattern recognition control method, it is
possible to easily increase the number of output
patterns as long as the recognition accuracy can be
ensured by determining a proper configuration of pre-
determined contractile motions and choosing the
proper feature set values.

A previous study using a neural network pattern
classifier technique demonstrated the ability to
discriminate between four types of limb motion [12],
and a more recent study showed that as many as 6
different pre-determined contractile motions can be
accurately classified using four channels of EMG signal
[13]. Although these results are encouraging, it is
always desired to have more output functions in order
to control a powered prosthesis with more dexterity
and in a natural way. Therefore, the motivation of this
study was to increase the number of output control
signals while, for the purpose of usability, limiting the
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number of EMG channels that was used. We employed
12 different contractile motions and the EMG signals
were acquired from three bipolar electrodes. The
number of EMG channels can influence the accuracy
of classification, and it appears that a multiple channel
configuration improves accuracy [13]. However, it is
impractical to attach too many EMG channels on the
skin. From our pilot experiment, using less than three
channels appeared not to be sufficient to classify
twelve motions. Thus, in this study, we used a
maximum of three EMG channels. We focused on the
feasibility of a neural network pattern classifier with as
many as twelve output patterns. Thus, the
experimental procedure and evaluation testing was
designed with the intention of having normal bodied
subjects participate.

The results of this study showed that the pattern
classification of our model could correctly classify
around 65% of the twelve different patterns after an
initial training of the neural network. It was observed
that most of the errors in classification occurred
between DOF and either D-F or DIF, between DIF and
D-F, and between E-F and either EOF or EIF (table 3).
This suggests that the humeral rotation motions (in,
out, and neutral) played a negligible role in producing
peculiar pattern features. However, humeral rotation
played a relatively larger role when that rotation was
conducted simultaneously with both arm elevation and
elbow extension (EOE, EIE, and E-E). This suggests
that determination of contractile motions can
significantly affect the classification performance. As a
means of improving the correct recognition rate, we
decided to make no separation between DOE and D-E,
D-F and DOF, and E-F and EOF. This will increase the
overall correct recognition rate up to about 76 %.
However, at the expense of the increase in the correct
recognition rate, the total number of output patterns
was reduced from 12 to 9. When the humeral motion
was completely excluded from contractile motions, the
overall correct recognition rate was increased up to
92%. However, this reduced the number of output
patterns to four.

There could be several other factors that may have
affected the overall classification rate in our evaluation
testing. First, the important innate characteristics of
the EMG signal may have been corrupted due to signal
noise. Prior to testing, subjects were asked to perform
motions and contract their muscle as consistently as
possible throughout the testing period. Nevertheless,
there remained concerns regarding this consistency.
Inconsistency in motion and muscle tension may have
weakened the pattern characteristics. If the evaluation
testing was performed with a single subject with more
data sets, we expect that the recognition rate could

have increased because the consistency could have

been secured. Additionally, the classification
performance is significantly affected by the choice of
feature values that are given as inputs to an artificial
neural network [16]. We can calculate many statistical
values from EMG signals; however, only simple time
domain feature values were used in this study. The
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classification performance can be favorably affected by
using the feature values that are calculated from time-
frequency statistical analysis such as wavelet-based
analysis [13]. However, in order to get a substantial
benefit from any advanced time-frequency analyzed
feature values, it should be done wunder the
assumption that each channel of EMG signals from
amputees is acquired from relatively separable
independent muscle groups. In general, however, the
acquired EMG signals from amputees may represent
compound muscle activity resulting from various
muscle groups that are less likely to contribute to pre-
determined contractile motions or the EMG signals can

" be contaminated with unknown artifacts due to

particular skin or muscular conditions of amputees.
Considering these perspectives, in this study, we
placed electrodes onto muscle groups that are not
necessarily dominant in carrying out the 12 pre-
determined contractile motions. Accordingly, we used
feature values calculated from simple time domain
statistical analysis.

Although this study demonstrated the ability to
generate many more outputs than previous studies
using a similar control scheme, the accuracy
performance of our control model may be very different
when applied to amputees. It would be unavoidable to
consider the different configuration of pre-determined
contractile motions, different locations for electrodes,
and different muscle tensions than the testing setup
used in this study. Therefore, every aspect regarding
input features and output features should be
determined based on the condition and needs of the
individual. In a previous study that accurately
classified six types of hand motions [13], four-channel
EMG electrodes were placed onto muscle groups in the
forearm that dominantly contribute to each different
pre-determined limb motion. Accordingly, there might
be an advantage to using feature values estimated from
time-frequency analysis. However, when applied to
amputees, it may be difficult to accurately locate the
muscle groups that are directly responsible for the pre-
determined contractile motions. In this study, we
employed 12 different contractile motions, and all the
motions did not physiologically originate from muscle
groups where we chose to place the electrodes. This
gave us a stronger reason to use an artificial neural
network pattern recognition technique. Although the
input modality may not be directly associated with
output modality, a great advantage of using an
artificial neural network lies in the fact that it supports
a stronger relationship between the input and output
of a system as more training procedures are involved.
In addition, if a certain user is targeted using our
control model, more detailed information on muscle
remnants and available contractile motions can be
collected and a more reliable neural network system
can be created. Thus, the accuracy of performance can
be increased with individual settings. However, it can
be difficult to find as many contractile motions as are -
needed to control multiple functions, and we may need
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to compromise between the number of output
functions and accuracy for its practical applications.
This study demonstrated the feasibility of a neural
network classification control method that could
generate twelve functions using three EMG channels.
Although such a control method has great potential for
a multifunctional prosthetic device, more investigation
is needed to better classify input contractile motions.
The various conditions of each amputee may cause
different performances, but a careful selection of the
number of EMG channels and estimated feature values
can make this artificial neural network control
technique a successful control scheme for multi-

functional prosthetic devices.
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