• Title/Summary/Keyword: Biogenesis

Search Result 188, Processing Time 0.03 seconds

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.

Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells

  • Kita, Shunbun;Shimomura, Iichiro
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.771-780
    • /
    • 2022
  • The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.

Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion

  • Chao Li;Yuanjing Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.260-268
    • /
    • 2023
  • Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.

Inhibition of Type II Diabetes in ob/ob Mice and Enhancement of Mitochodrial Biogenesis in C2C12 Myotubes by Korean Mistletoe Extract (한국산 겨우살이 추출물(KME)의 2형 당뇨 억제 및 근육세포 미토콘드리아 생성 증가 효과)

  • Jung, Hoe-Yune;Yoo, Yung Choon;Kim, Inbo;Sung, Nak Yun;Choi, Ok-Byung;Choi, Bo-Hwa;Kim, Jong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.324-330
    • /
    • 2015
  • In this study, the anti-diabetic activity of a cold water extract of Korean mistletoe (KME) was investigated in C57BL/6J Lep ob (ob/ob) mice. Oral administration of KME (50 or 100 mg/kg/d) significantly inhibited the level of blood glucose of ob/ob mice after 5 days from the beginning of KME treatment. And the anti-diabetic effect of KME was stabilized 10 days after oral administration, showing a substantial reduction of blood glucose levels by more than 20% as compared with control mice. The results of oral glucose tolerance test (OGTT) revealed that oral administration of KME gave rise to a remarkable improvement in overall glucose response. Oral administration of KME in ob/ob diabetic mice also significantly reduced blood total cholesterol (TCHO) and triglyceride (TG) levels compared with the diabetic control mice. Moreover, in an in vitro experiment using C2C12 myotubes, treatment of KME prominently increased glucose uptake. Interestingly, KME significantly increased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-${\alpha}$ ($PGC-1{\alpha}$), a head regulator of mitochondrial biogenesis and oxidative metabolism, and $PGC-1{\alpha}$-associated genes such as glucose transporter type 4 (GLUT4), estrogen-related receptor-${\alpha}$ ($ERR-{\alpha}$), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TmfA) in C2C12 cells. These results suggest that KME has potential as a novel therapeutic agent for diabetes, and its anti-diabetic activity may be related to the regulation of mitochondrial biogenesis.

Comparative analysis of core and pan-genomes of order Nitrosomonadales (Nitrosomonadales 목의 핵심유전체(core genome)와 범유전체(pan-genome)의 비교유전체학적 연구)

  • Lee, Jinhwan;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • All known genomes (N=10) in the order Nitrosomonadales were analyzed to contain 9,808 and 908 gene clusters in their pan-genome and core genome, respectively. Analyses with reference genomes belonging to other orders in Betaproteobacteria revealed that sizes of pan-genome and core genome were dependent on the number of genomes compared and the differences of genomes within a group. The sizes of pan-genomes of the genera Nitrosomonas and Nitrosospira were 7,180 and 4,586 and core genomes, 1,092 and 1,600, respectively, which implied that similarity of genomes in Nitrosospira were higher than Nitrosomonas. The genomes of Nitrosomonas contributed mostly to the size of the pan-genome and core genomes of Nitrosomonadales. COG analysis of gene clusters showed that the J (translation, ribosomal structure and biogenesis) category occupied the biggest proportions (9.7-21.0%) among COG categories in core genomes and its proportion increased in the group which genetic distances among members were high. The unclassified category (-) occupied very high proportions (34-51%) in pan-genomes. Ninety seven gene clusters existed only in Nitrosomonadales and not in reference genomes. The gene clusters contained ammonia monooxygenase (amoA and amoB) and -related genes (amoE and amoD) which were typical genes characterizing the order Nitrosomonadales while they contained significant amount (16-45%) of unclassified genes. Thus, these exclusively-conserved gene clusters might play an important role to reveal genetic specificity of the order Nitrosomonadales.

Non-ribosomal Ribosome Assembly Factors in Escherichia coli (Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들)

  • Choi, Eunsil;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.915-926
    • /
    • 2014
  • The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.

Occurrence of Leaf Spot Caused by Stemphylium lycopersici on Cirsium setidens in Korea (Stemphylium lycopersici에 의한 고려엉겅퀴 점무늬병의 발생)

  • Choi, Hyo-Won;Kim, Seok Gu;Hong, Sung Kee;Lee, Young Kee;Lee, Jae Guem;Kim, Hyo Won;Lee, Eun Hyeong
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.201-205
    • /
    • 2016
  • In August 2015, leaf spot symptoms were observed on Korean gondre thistle (Cirsium setidens) in Youngwol, Korea. During the early stage, the symptoms appeared as one or more small gray-brown to brown spots on plant leaves. The spots showed extensive enlargement over time and eventually became large dark brown to black lesions on the whole leaf. Stemphylium species were consistently isolated from affected leaves. All isolates were identified as S. lycopersici, S. solani, or S. xanthosomatis based on morphological and cultural characteristics. The isolates were confirmed as S. lycopersici based on a multilocus sequence analysis using the ribosomal internal transcribed spacer (ITS) region, elongation factor 1, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and the noncoding region between the vacuolar membrane ATPase catalytic subunit A gene and a gene involved in vacuolar biogenesis. Pathogenicity was tested by spore suspension inoculation on wounded or unwounded gondre leaves. The lesions were observed on inoculated leaves within 3 days after inoculation, regardless of wound. To our knowledge, this is the first report of the leaf spot on gondre thistle caused by S. lycopersici in Korea or elsewhere.

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Biosenesis of Epstein-Barr Virus MicroRNAs in B Cells (B 세포에서 Epstein-Barr virus microRNA들의 전사 및 성숙)

  • Kim Do Nyun;Oh Sang Taek;Lee Jae Myun;Lee Won-Keun;Lee Suk Kyeong
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.909-915
    • /
    • 2005
  • We investigated microRNA (miRNA) biogenesis of Epstein-Barr virus (EBV) which is the first virus shown to produce viral miRNAs. As expected, expression of all the reported EBV miRNAs were detected by Northen blot in an EBV-infected B cell line, B95-8; BHRF1-1, BHIU1-2, BHRF1-3, BART1, and BART2. The putative EBV pri-miRWAs and pre-miRNAs predicted from the known mature EBV miRNA sequences were detected by RT-PCR in B95-8 cells. Many animal miRNA genes exist as clusters of 2-7 genes and they are expressed polycistronically. As the EBV miRNAs are clustered in two regions of the EBV genome, we examined whether these clustered EBV miRNA genes are also expressed polycistronically. A long polycistronic transcript with the expected size (1602 bp) corresponding to the BHRF1-1~BHRF1-2~BHRF1-3 was amplified. However, any polycistronic transcript containing both BART1 and BART2 was detectable in B95-8. These results suggest that EBV miRNAs may be processed in a similar way with animal miRNAs and that some of the clustered EBV miRNAs can be transcribed polycistronically.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.