• Title/Summary/Keyword: Biofertilizer

Search Result 63, Processing Time 0.026 seconds

Solid Culture of Phosphate-solubilizing Fungus, Penicillium sp. PS-113 (인산가용화 사상균 Penicillium sp. PS-113의 고체배양)

  • Kang, Sun-Chul;Choi, Myoung-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • A fungus, Penicillium sp. PS-113, isolated from soil showed the high phosphate-solubilizing activity in patato dextrose broth-rock phosphate to produce free phosphates to the culture broth with the concentrations of 585 ppm against rock phosphate. In this medium, the optimum temperature and initial pH to solubilize rock phosphate were 30$^{\circ}C$ and pH 7.5, respectively. In order to make the mass production of the conidia from this fungus, we cultured in on various solid-based media like barley, corn, wheat, rice, rice bran, and compost. As a result, the fungus highly produced conidia ranging from 2.1 to $5.1{\times}10_9$ conidia/g${\cdot}$media on these solid media except compost-based medium, which was 0 times less than others. Effects of inoculation of the phosphate solubilizing fungus as a biofertilizer were studied in perlite-based pot cropped with Zea mays Suwon 19. Inoculation of Penicillium sp. PS-113 increased in plant height (1.4 times), plant weight (5.2~8.1 times) and root length (1.1~1.2 times) at 60-day cultivation, compared to Hogland solution either without $NH_4H_2PO_4$ or displace $NH_4H_2PO_4$ to powdered rock phosphate, a phosphorus source for plant growth.

  • PDF

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Services of Algae to the Environment

  • Rai, Lal-Chand;Har Darshan Kumar;Frieder Helmut Mohn;Carl Johannas Soeder
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.119-136
    • /
    • 2000
  • Being autotrophic, algae occupy a trategic place in the biosphere. They produce oxygen both directly and indirectly through the chloroplasts of all green plants. The chloroplasts are believed to have originated from archaic prokaryotic algae through endosymbiosis with primitive eukaryotic cells. Phytoplankton and other algae regulate the global environment not only by releasing oxygen but also by fixing carbon dioxide. They affect water quality, help in the treatment of sewage, and produce biomass. They can be used to produce hydrogen which is a clean fuel, and biodiesel, and fix $N_2$ for use as a biofertilizer. Some other services of algae to the environment include restoration of metal damaged ecosystems, reducing the atmospheric $CO_2$ load and citigating global warming, reclamation of saline-alkaline unfertile lands, and production of dimethyl sulphide (DMS) and oxides of nitrogen (NOx) involved in the regulation of UV radiation. ozone concentration, and global warming. Algae can be valuable in understanding and resolving certain environmental issues.

  • PDF

Effects of Application of Rhodopseudomonas sp. on Seed Germination and Growth of Tomato Under Axenic Conditions

  • Koh, Rae-Hyun;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1805-1810
    • /
    • 2007
  • Purple nonsulfur bacteria were isolated from river sediments and their growth promoting capabilities on tomato were examined. Isolated strains KL9 and BL6 were identified as Rhodopseudomonas spp. by 16S rDNA sequence analysis. Rhodopseudomonas strain KL9 maximally produced 5.56 mM/min/mg protein and $67.2\;{\mu}M/min/mg$ protein of indole-3-acetic acid (IAA) and 5-aminolevulinic acid (ALA), respectively, which may be one of the mechanisms of plant growth enhancement. The germination percentage of tomato seed, total length, and dry mass of germinated tomato seedling increased by 30.2%, 71.1%, and 270.8%, respectively, compared with those of the uninoculated control 7 days after inoculation of strain KL9. The lengths of the root and shoot of germinated seedling treated with 3 mM tryptophan, a precursor of IAA, increased by 104.4% and 156.5%, respectively, 7 days after inoculation of strain KL9. Rhodopseudomonas KL9 increased 123.5% and 54% of the root and shoot lengths of germinated seedling, respectively, treated with 15 mM glycine and succinate, precursors of ALA. This plant growth promoting capability of purple nonsulfur bacteria may be a candidate for a biofertilizer in agriculture.

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Effect of Bacillus mesonae H20-5 on Fruit Yields and Quality in Protected Cultivation

  • Yoo, Sung-Je;Kim, Jeong Woong;Kim, Sang Tae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.84-88
    • /
    • 2019
  • A variety of microorganisms in rhizosphere affect plant health by plant growth promotion, mitigation of abiotic stresses as well as protection from pathogen attacks. In our previous study, we selected a bacterium, Bacillus mesonae H20-5, for alleviation of salinity stress in tomato plants. In this study, we verified the effect of a liquid formulation of B. mesonae H20-5 (TP-H20-5) on fruit production and phytochemical accumulation including lycopene and polyphenol in cherry tomato and strawberry fruits in on-farm tests of protected cultivation under salinity stress. When vegetables including tomato, cherry tomato, strawberry, and cucumber were treated with TP-H20-5 by irrigated systems, final marketable yields were increased by 21.4% (cherry tomato), 9.3% (ripen tomato), 120.6% (strawberry), and 14.5% (cucumber) compared to untreated control. Moreover, treatment of TP-H20-5 was showed increase of phytochemicals such as lycopene and total polyphenol compared to untreated control in cherry tomato and strawberry. Therefore, these results indicated that a formulant of B. mesonae H20-5 can be used as a potential biofertilizer for increasing fruit production and quality.

Practical significance of plant growth-promoting rhizobacteria in sustainable agriculture: a review

  • Subhashini Wijeysingha;Buddhi C. Walpola;Yun-Gu Kang;Min-Ho Yoon;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.759-771
    • /
    • 2023
  • Plant growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that intensively colonize plant roots and are crucial in promoting the crop growth. These beneficial microorganisms have garnered considerable attention as potential bio-inoculants for sustainable agriculture. PGPR directly interacts with plants by providing essential nutrients through nitrogen fixation and phosphate solubilization and accelerating the accessibility of other trace elements such as Cu, Zn, and Fe. Additionally, they produce plant growth-promoting phytohormones, such as indole acetic acids (IAA), indole butyric acids (IBA), gibberellins, and cytokinins.PGPR interacts with plants indirectly by protecting them from diseases and infections by producing antibiotics, siderophores, hydrogen cyanide, and fungal cell wall-degrading enzymes such as glucanases, chitinases, and proteases. Furthermore, PGPR protects plants against abiotic stresses such as drought and salinity by producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and modulating plant stress markers. Bacteria belonging to genera such as Bacillus, Pseudomonas, Burkholderia, Pantoa, and Enterobacter exhibit multiple plant growth-promoting traits, that can enhance plant growth directly, indirectly, or through synergetic effects. This comprehensive review emphasizes how PGPR influences plant growth promotion and presents promising prospects for its application in sustainable agriculture.

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity (난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성)

  • Go, Tae-Hun;Lee, Sang-Mee;Lee, Na-Ri;Jeong, Seong-Yun;Hong, Chang-Oh;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1457-1464
    • /
    • 2013
  • We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.

Performance of an Intermittent Aerated Pilot-scale Reactor Vessel for Commercial Composting (상업용 퇴비화를 위한 간헐통기식 파이로트 규모 반응조의 성능)

  • Hong, Ji-Hyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.31-44
    • /
    • 1998
  • Mixtures of hog manure slurry and sawdust were composted by an intermittent aeration method to verify the performance evaluation of pilot-scale reactor vessels during composting high rate (decomposition) process. Instrumentation was designed to measure temperatures in compost, oxygen and carbon dioxide concentration, air flow rates, and ammonia gas emitted. It was found that ammonia concentration during composting high rate decreased more quickly to the allowable range of 34-40 ppm after 14days at near the optimal levels (II) than in the case of lower levels (I). The influence of the optimal levels (II) such as moisture content (55-65%), C/N ratio (20-40), pH (7-8) and temperature in compost (<$60^{\circ}C$) on the reduction of ammonia gas was considerable for commercial composting.

  • PDF

Growth Promotion of Tomato Seedlings by Applicaion of Bacillus sp. Isolated from Rhizosphere (근권에서 분리한 Bacillus sp.의 적용에 의한 토마토의 생장 촉진)

  • Lee, Kang-Hyeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Two bacterial strains isolated from soil (Bacillus subtilis strains: PS2 and RFO41) were evaluated to determine their promoting effect on the growth of tomato seedling under axonic and pot conditions. The production of phytohormone, such as indole-3-acetic acid, indole-3-butyric acid, gibberellin and zeatin by these two strains was investigated as possible mechanisms for plant growth stimulation. Both PS2 and RFO41 were shown to produce various phytohormones, and. the production of phytohormones was stimulated by the addition of peptone-rich brain heart broth medium. In addition, these bacteria exhibited high levels of phosphatase activity, which ranged from 2.18 to $2.7\;{\mu}\;{\rho}-nitrophenol/ml/hr$. PS2 and RFO41 were applied to the pot test for growth of tomato seed with phosphate. Root and shoot lengths of germinated tomato after 15 days were 45.5% and 36.5% longer than that of control in RFO41 treated samples, respectively. Baciller sp. PS2 and RFO41 may have a potential for biofertilizer in the agriculture.