Effects of Application of Rhodopseudomonas sp. on Seed Germination and Growth of Tomato Under Axenic Conditions

  • Koh, Rae-Hyun (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
  • Published : 2007.11.30

Abstract

Purple nonsulfur bacteria were isolated from river sediments and their growth promoting capabilities on tomato were examined. Isolated strains KL9 and BL6 were identified as Rhodopseudomonas spp. by 16S rDNA sequence analysis. Rhodopseudomonas strain KL9 maximally produced 5.56 mM/min/mg protein and $67.2\;{\mu}M/min/mg$ protein of indole-3-acetic acid (IAA) and 5-aminolevulinic acid (ALA), respectively, which may be one of the mechanisms of plant growth enhancement. The germination percentage of tomato seed, total length, and dry mass of germinated tomato seedling increased by 30.2%, 71.1%, and 270.8%, respectively, compared with those of the uninoculated control 7 days after inoculation of strain KL9. The lengths of the root and shoot of germinated seedling treated with 3 mM tryptophan, a precursor of IAA, increased by 104.4% and 156.5%, respectively, 7 days after inoculation of strain KL9. Rhodopseudomonas KL9 increased 123.5% and 54% of the root and shoot lengths of germinated seedling, respectively, treated with 15 mM glycine and succinate, precursors of ALA. This plant growth promoting capability of purple nonsulfur bacteria may be a candidate for a biofertilizer in agriculture.

Keywords

References

  1. Archana, A., Ch. Sasikala, Ch. V. Ramana, and K. Arunasri. 2004. 'Paraffin wax-overlay of pour plate', a method for the isolation and enumeration of purple non-sulfur bacteria. J. Microbiol. Meth. 59: 423-425 https://doi.org/10.1016/j.mimet.2004.08.006
  2. Bashan, Y. and L. de-Bashan. 2005. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: A critical examination. Soil Biol. Biochem. 37: 1795-1804 https://doi.org/10.1016/j.soilbio.2005.02.013
  3. Chon, S. U. 2003. Herbicidal activity of $\delta$-aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48: 50-58
  4. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. APHA-AWWA-WEF. Washington, D.C. Section 4: 111
  5. de Brito Alvarez, M., S. Gagne, and H. Antoun. 1995. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl. Environ. Microbiol. 61: 194-199
  6. Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 159: 371-394 https://doi.org/10.1016/j.micres.2004.08.004
  7. Elbadry, M., H. G. Eldin, and Kh. Elbanna. 1999. Effects of Rhodobacter capsulatus inoculation in combination with graded levels of nitrogen fertilizer on growth and yield of rice in pots and lysimeter experiments. World J. Microbiol. Biotechnol. 15: 393-395 https://doi.org/10.1023/A:1008958832402
  8. Gerhardson, B. and S. Wright. 2002. Bacterial associations with plants: Beneficial, non N-fixing interactions, pp. 79-103. In K. Sivasithamparam, K. W. Dixon, and R. L. Narrett (eds.), Microorganisms in Plant Conservation and Biodiversity. Kluwer Academic Press, London
  9. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63-68 https://doi.org/10.1006/jtbi.1997.0532
  10. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796
  11. Gupta, S., D. Arora, and A. Srivastava. 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol. Biochem. 27: 1051-1058 https://doi.org/10.1016/0038-0717(95)00011-3
  12. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22: 109-114 https://doi.org/10.1023/A:1005883930727
  13. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 121-132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press. New York
  14. Kende, H. and J. A. D. Zeevaart. 1997. The five 'classical' hormones. Plant Cell 9: 1197-1210 https://doi.org/10.1105/tpc.9.7.1197
  15. Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79 https://doi.org/10.1023/A:1004260222528
  16. Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33: 390-395 https://doi.org/10.1139/m87-068
  17. Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocylopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
  18. Maudinas, B., M. Chemardin, E. Yovanovitch, and P. Gadal. 1981. Gnotobiotic cultures of rice plants up to ear stage in the absence of combined nitrogen source but in the presence of free living nitrogen fixing bacteria Azotobacter vinelandii and Rhodopseudomonas capsulata. Plant Soil 60: 85-97 https://doi.org/10.1007/BF02377114
  19. Mauzerall, D. and S. Granick. 1955. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
  20. Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192
  21. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  22. Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. Ryu, K. Chung, and T. Sa. 2005. Effects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) and blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908
  23. Rajasekhar, N., Ch. Sasikala, and Ch. V. Ramana. 1999. Photoproduction of indole 3-acetic acid by Rhodobacter sphaeroides from indole and glycine. Biotechnol. Lett. 21: 543-545 https://doi.org/10.1023/A:1005515906321
  24. Rodríguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17: 319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  25. Ryu, C.-M., J. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  26. Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi, K. Kim, R. Anandham, J. Yun, K. H. Kim, and T. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628
  27. Siddiqui, Z., A. Iqbal, and I. Mahmood. 2001. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl. Soil Ecol. 16: 179-185 https://doi.org/10.1016/S0929-1393(00)00083-4
  28. Watanabe, K., T. Tanaka, Y. Hotta, H. Kuramochi, and Y. Takeuchi. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32: 99-103
  29. Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31: 655-665 https://doi.org/10.1016/S0038-0717(98)00130-8