• Title/Summary/Keyword: Biodegradable Polymers

Search Result 171, Processing Time 0.021 seconds

Synthesis and Properties of Linear and Star-shaped poly(L-lactic acid)s by Direct Solution Polycondensation (직접 용액 축중합에 의한 직쇄형 및 스타형 폴리락트산의 합성과 물성)

  • Kim, Wan Jung;Lee, Sun Young;Kim, Ji-Heung;Kim, Soo Hyun;Kim, Young Ha
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1028-1034
    • /
    • 1999
  • Poly(lactic acid) is expected to be one of the most promising biodegradable polymers. However, the high molecular weight polymer could be obtained by ring-opening polymerization process conventionally, which raises the production cost and decreases the final yield. In this study, linear and star-shaped poly(L-lactic acid)s were prepared by direct solution polycondensation method and their physical and thermal properties were examined. Tin compounds were found to be effective catalyst for the preparation of high molecular weight polymers. When 0.2g (0.5 wt % of monomer) of $SnCl_2$ and 100 mL of p-xylene were used, the polymer yield and molecular weight were relatively high. As a means to obtain higher molecular weight polymer easily in the direct polycondensation system, dipentaerythritol(dipet) or pentaerythritol(pet) was introduced as a multifunctional branching monomer to provide a star-shaped poly(lactic acid). Moderately high molecular weight polymers with the inherent viscosity values up to 1.14 dL/g(weight-average molecular weight of about 140000 by GPC) were obtained and could be cast strong and transparent films.

  • PDF

Biodegradation Characteristics of Poly-3-hydroxybutyrate, $Sky-Green^R$ and $Mater-Bi^R$ by Soil Bacteria (토양세균의 Poly-3-hydroxybutyrate,$Sky-Green^R$$Mater-Bi^R$분해 특성)

  • 이애리;김말남
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2000
  • Degradation behavior of the three commercial biodegradable polymers, namely poly(3-hydroxybutyrate) (PHB) Sky-Green/sup R/ (SG) and Mater-Bi/sup R/ (MB) was investigated using bacteria isolated from activated sludge and farm soil. Three PHB degrading bacteria, three SG degrading bacteria and one MB degrading bacteria were isolated. The PHB degrading bacteria were identified to be Flavimonas oryzihabitans, Corynebacterium pseudodiphtheriticum and Micrococcus diversus, while Pseudomonas vesicuraris, Pasteurlla multocida and Flavobacterium odoratum were identified as SG degrading bacteria. As for MB, Pseudomonas vesicuraris was isolated. The shake flask test for 28 days indicated that the rate of biodegradation of PHB, SG and MB in terms of weight loss were about 44∼69% 25∼32% and 29% respectively. The surface morphology of PHB, SG andMB films before and after degradation by microorganisms in an activated sludge soil was observed under SEM, demonstrating that the film surface had a very porous structure, and that microorganisms colonized heavily on the film surface. TOC and pH variation as a result of abiotic hydrolysis, or microbial growth in the absence of the polymers were compared to those due to degradation by F. oryzihabitans. Abiotic hydrolysis of PHB was three times as fast as that of SG and MB. Addition of yeast extract to the basal liquid medium accelerated the biodegradation of the polymers. Biodegradation of PHB was always faster than that of SG and MB irrespectively of the presence of yeast extract in the basal liquid medium.

  • PDF

Natural Origin Polymers: Applications as Wound Care Materials (자연 고분자 : 상처 치료 재료로 활용)

  • Karadeniz, Fatih;Sung, Hye Kyeong;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.382-393
    • /
    • 2019
  • Wound care is a health industry concern affecting millions worldwide. Recent increase in metabolic disorders such as diabetes comes with elevated risk of wound-based complications. Treatment and management of wounds are difficult practices due to complexity of the wound healing process. Conventional wound dressings and treatment applications only provide limited benefits which are mainly aimed to keep wound protected from external factors. To improve wound care, recent developments make biopolymers to be of high interest and importance to researchers and medical practitioners. Biopolymers are polymers or natural origin produced by living organisms. They are credited to be highly biocompatible and biodegradable. Currently, studies reported biopolymers to exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative and angiogenic activities which are crucial for effective wound management. Several biopolymers, namely chitosan, cellulose, collagen, hyaluronic acid and alginic acid have been already investigated and applied as wound dressing agents. Different derivatives of biopolymers have also been developed by cross-linking with other molecules, grafting with other polymers, and loading with bioactive agents or drugs which showed promising results towards wound healing without any undesired outcome such as scarring and physiological abnormalities. In this review, current applications of common biopolymers in wound treatment industry are highlighted to be a guide for further applications and studies.

Preparation of Biodegradable Polymer Microparticles Containing 5-FU Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 5-FU 함유 생분해성 고분자 미세입자 제조)

  • Jung, Ju-Hee;Jung, In-Il;Joo, Hyun-Jae;Shin, Jae-Ran;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.452-459
    • /
    • 2008
  • To obtain maximal efficacy with minimal systemic side-effects, many studies have been carried out to achieve the controlled release of 5-fluorouracil (5-FU). In this study, biodegradable poly(L-lactide) (L-PLA) microparticles containing 5-FU were prepared by a process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide. The effects of various organic solvents, drug/polymer feeding ratio, polymer molecular weight, and blending with the same polymers with different molecular weights on the formation of 5-FU loaded microparticles were investigated under a predetermined operating condition from our previous study. The drug recovery, entrapment efficiency, and in vitro drug release kinetics were determined by HPLC assays. The drug recovery obtained from the ASES process was found to be very high, whereas the drug entrapment efficiency was considerably low in all the experiments due to the poor affinity between L-PLA and 5-FU. These results indicated that the precipitation rate of L-PLA might be quite different from that of 5-FU so that there was little chance to form 5-FU loaded L-PLA microparticles.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

BCNU Release Behaviour from BCNU/PLGA Wafer Prepared by Vacuum Drying Method (진공 건조법에 의해 제조된 BCNU/PLGA웨이퍼의 BCNU 방출거동)

  • Park, Jung-Soo;Shin, Joon-Hyun;Lee, Doo-Hee;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • Biodegradable polymers such as polylactide, polyglycolide and poly (lactide- co-glycolide) (PLGA) have been extensively investigated because of easily controlled drug release rate, completely degradable materials without the toxic by-product, and good biocompatibility. But, according to the bulk erosion property of PLGA in vitro test, it had the disadvantage that first-order release reduced releasing amount slowly after excessive initial burst. In this study we used PLGA powder obtained through recrystallization to revise bulk erosion property of PLGA. The PLGA used in this study was prepared by vacuum drying method and to estimate release profiles of BCNU loaded PLGA wafer. We also evaluated the release profile of drug with the water soluble additive. It was found that the drug loaded PLGA recrystallized by vacuum drying method exhibited the initial burst and the constant rate of drug release compared to that prepared by a conventional method.

Preparation and Drug Release Properties of Naproxen Imprinted Biodegradable Polymers Based Multi-Layer Biomaterials (나프록센이 각인된 생분해성 고분자 기반 다층 바이오소재의 제조 및 약물 방출 특성)

  • Eun-Bi Cho;Han-Seong Kim;Min‑Jin Hwang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2023
  • In this study, we prepared naproxen (NP) imprinted biodegradable polymer based multi-layer biomaterials using allbanggae starch (ABS), polyvinyl alcohol (PVA), and alginic acid (SA), and investigated their physicochemical properties and the controlled drug release effects. In addition, the prepared multi-layer biomaterials were characterized by FE-SEM and FT-IR. In order to confirm the controlled drug release effect for the transdermal drug delivery system (TDDS), the NP release properties of NP imprinted multi-layer biomaterials were investigated using various pH buffer solutions and artificial skin at 36.5 ℃. The results of NP release in various pH buffer solutions indicated that the NP release at high pH was about 1.3 times faster than that at low pH. In addition, NP release in multi-layer biomaterials was about 4.0 times slower than that in single-layer biomaterials. It was confirmed that the NP release rate in triple-layer biomaterials was 4.0 times slower than that in single-layer biomaterials while using artificial skin. Also, it could be found that NP in double-layer biomaterials and triple-layer biomaterials was released sustainably for 12 h. The NP release mechanism in pH buffer solutions followed the Fickian diffusion mechanism, but followed the non-Fickian diffusion mechanism with artificial skin.

OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS IN A THREE DIMENSIONAL POLYDIOXANONE/PLURONIC F127 SCAFFOLD (Polydioxanone/pluronic F127 담체에 유입된 골막기원세포의 조골활성)

  • Lee, Jin-Ho;Oh, Se-Heang;Park, Bong-Wook;Hah, Young-Sool;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.478-484
    • /
    • 2009
  • Three-dimensional porous scaffolds play an important role in tissue engineering strategies. They provide a void volume in which vascularization, new tissue formation, and remodeling can occur. Like any grafted materials, the ideal scaffold for bone tissue engineering should be biocompatible without causing an inflammatory response. It should also possess biodegradability, which provides a suitable three-dimensional environment for the cell function together with the capacity for gradual resorption and replacement by host bone tissue. Various scaffolds have already been developed for bone tissue engineering applications, including naturally derived materials, bioceramics, and synthetic polymers. The advantages of biodegradable synthetic polymers include the ability to tailor specific functions. The purpose of this study was to examine the osteogenic activity of periosteal-derived cells in a polydioxanone/pluronic F127 scaffold. Periosteal-derived cells were successfully differentiated into osteoblasts in the polydioxanone/pluronic F127 scaffold. ALP activity showed its peak level at 2 weeks of culture, followed by decreased activity during the culture period. Similar to biochemical data, the level of ALP mRNA in the periosteal-derived cells was also largely elevated at 2 weeks of culture. The level of osteocalcin mRNA was gradually increased during entire culture period. Calcium content was detactable at 1 week and increased in a time-dependent manner up to the entire duration of culture. Our results suggest that polydioxanone/pluronic F127 could be a suitable scaffold of periosteal-derived cells for bone tissue engineering.

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.