DOI QR코드

DOI QR Code

Preparation and Drug Release Properties of Naproxen Imprinted Biodegradable Polymers Based Multi-Layer Biomaterials

나프록센이 각인된 생분해성 고분자 기반 다층 바이오소재의 제조 및 약물 방출 특성

  • Eun-Bi Cho (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Han-Seong Kim (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Min‑Jin Hwang (Department of Environmental System Engineering, Chonnam National University) ;
  • Soon-Do Yoon (Department of Biomolecular and Chemical Engineering, Chonnam National University)
  • 조은비 (전남대학교 화공생명공학과) ;
  • 김한성 (전남대학교 화공생명공학과) ;
  • 황민진 (전남대학교 환경시스템공학과) ;
  • 윤순도 (전남대학교 화공생명공학과)
  • Received : 2023.02.07
  • Accepted : 2023.02.28
  • Published : 2023.04.10

Abstract

In this study, we prepared naproxen (NP) imprinted biodegradable polymer based multi-layer biomaterials using allbanggae starch (ABS), polyvinyl alcohol (PVA), and alginic acid (SA), and investigated their physicochemical properties and the controlled drug release effects. In addition, the prepared multi-layer biomaterials were characterized by FE-SEM and FT-IR. In order to confirm the controlled drug release effect for the transdermal drug delivery system (TDDS), the NP release properties of NP imprinted multi-layer biomaterials were investigated using various pH buffer solutions and artificial skin at 36.5 ℃. The results of NP release in various pH buffer solutions indicated that the NP release at high pH was about 1.3 times faster than that at low pH. In addition, NP release in multi-layer biomaterials was about 4.0 times slower than that in single-layer biomaterials. It was confirmed that the NP release rate in triple-layer biomaterials was 4.0 times slower than that in single-layer biomaterials while using artificial skin. Also, it could be found that NP in double-layer biomaterials and triple-layer biomaterials was released sustainably for 12 h. The NP release mechanism in pH buffer solutions followed the Fickian diffusion mechanism, but followed the non-Fickian diffusion mechanism with artificial skin.

본 연구는 allbanggae starch (ABS), polyvinyl alcohol (PVA), alginic acid (SA)를 이용하여 naproxen (NP) 각인 starch 기반 다층 바이오소재를 제조하고, 물리화학적 특성과 약물 방출 제어 효과를 조사하였다. 또한, FE-SEM과 FT-IR 분석에 의해 제조한 다층 바이오소재의 특성을 조사하였다. 약물 방출 제어 효과와 경피 약물 전달 시스템의 적용 가능성을 확인하기 위해 NP 각인 다층 바이오소재로부터 NP 방출 특성을 사람의 체온인 36.5 ℃에서 다양한 pH buffer solution과 인공 피부를 이용하여 확인하였다. NP는 낮은 pH보다 높은 pH에서 1.3배 더 빠른 방출을 나타냈고, single-layer 바이오소재에서보다 multi-layer 바이오소재에서 약 4.0배 느린 방출이 일어남을 확인하였다. 인공 피부 방출에서도 동일하게 single-layer 바이오소재보다 multi-layer 바이오소재에서 약 4.0배 더 느린 약물 방출 결과를 나타내었다. 또한, double-layer와 triple-layer 바이오소재 모두 12시간 동안 지속적으로 NP가 방출되었음을 확인 하였다. NP 방출 mechanism을 규명하기 위해 수학적 모델링에 적용하여 비교했을 때, pH buffer solution에서의 방출은 Fickian diffusion mechanism, 인공 피부 방출은 empirical mechanism에 적합한 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1I1A3A01061508)에 의해 수행하였음.

References

  1. J. R. O'Dell, Therapeutic strategies for rheumatoid arthritis, N. Engl. J. Med., 350, 2591-2602 (2004). https://doi.org/10.1056/NEJMra040226
  2. W. Grassi, R. De Angelis, G. Lamanna, and C. Cervini, The clinical features of rheumatoid arthritis, Eur. J. Radiol., 27, S18-S24 (1998). https://doi.org/10.1016/S0720-048X(98)00038-2
  3. J. S. Smolen, D. Aletaha, M. Koeller, M. H. Weisman, and P. Emery, New therapies for treatment of rheumatoid arthritis, The Lancet, 370, 1861-1874 (2007). https://doi.org/10.1016/S0140-6736(07)60784-3
  4. T. Aoki and S. Narumiya, Prostaglandins and chronic inflammation, Trends Pharmacol. Sci., 33, 301-311 (2012).
  5. B. Cryer and M. Feldman, Cyclooxygenase-1 and cyclooxygecase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs, Am. J. Med., 104, 413-421 (1998). https://doi.org/10.1016/S0002-9343(98)00091-6
  6. L. J. Crofford, Use of NSAIDs in treating patients with arthritis, Arthritis Res. Ther., 15, 1-10 (2013). https://doi.org/10.1186/ar4174
  7. C. Bornbardier, L. Laine, A. Reicin, D. Shapiro, R. Burgos-Vargas, B. Davis, R. Day, M Bosi Ferraz, C. J. Hawkey, M. C. Hochberg, T. K. Kvien, and T. J. Schnitzer, Comparison of upper gacstrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis, N. Engl. J. Med., 343, 1520-1528 (2000). https://doi.org/10.1056/NEJM200011233432103
  8. R. N. Brogden, R. C. Heel, T. M. Speight, and G. S. Avery, Naproxen up to date: A review of its pharmacological properties and therapeutic efficacy and use in rheumatoid diseases and pain states, Drugs, 18, 241-277 (1979). https://doi.org/10.2165/00003495-197918040-00001
  9. P. A. Todd and S. P. Clissold, Naproxen: A reappraisal of its pharmacology, and therapeutic use in rheumatic diseases and pain states, Drugs, 40, 91-137 (1990). https://doi.org/10.2165/00003495-199040010-00006
  10. G. S. Sharma, M. V. Srikanth, M. U. Uhumwangho, K. K. Phani, and K. M. Ramana, Recent trends in pulsatile drug delivery systems-A review, Int. J. Drug Deliv., 2, 200-212 (2010). https://doi.org/10.5138/ijdd.2010.0975.0215.02030
  11. D. Ramadon, M. T. McCrudden, A. J. Courtenay, and R. F. Donnelly, Enhancement strategies for transdermal drug delivery systems: Current trends and applications, Drug Deliv. Transl. Res., 12, 758-791 (2022). https://doi.org/10.1007/s13346-021-00909-6
  12. W. Y. Jeong, M. Kwon, H. E. Choi, and K. S. Kim, Recent advances in transdermal drug delivery systems: A review, Biomater. Res., 25, 1-15 (2021). https://doi.org/10.1186/s40824-020-00202-6
  13. M. C. Berg, L. Zhai, R. E. Cohen, and M. F. Rubner, Controlled drug release from porous polyelectrolyte multilayers, Biomacromolecules, 7, 357-364 (2006). https://doi.org/10.1021/bm050174e
  14. P. L. Lam and R. Gambari, Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries, J. Control. Release, 178, 25-45 (2014). https://doi.org/10.1016/j.jconrel.2013.12.028
  15. L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32, 762-798 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017
  16. S. Y. Lee, Y. H. Yun, G. Ahn, and S. D. Yoon, Preparation of niacinamide imprinted starch-based biomaterials for treating of hyperpigmentation, Int. J. Biol. Macromol., 232, 123382 (2023).
  17. K. Y. Lee and D. J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym. Sci., 37, 106-126 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.003
  18. J. W. Rhim, Physical and mechanical properties of water resistant sodium alginate films, Food Sci. Technol., 37, 323-330 (2004).
  19. K. I. Draget, G. Skjak-Braek, and O. Smidsrod, Alginate based new materials, Int. J. Biol. Macromol., 21, 47-55 (1997). https://doi.org/10.1016/S0141-8130(97)00040-8
  20. S. N. Pawar and K. J. Ddgar, Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, 33, 3279-3305 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.007
  21. A. Ali, F. Xie, L. Yu, H. Liu, L. Meng, S. Khalid, and L. Chen, Preparation and characterization of starch-based composite films reinforced by polysaccharide-based crystals, Compos. B Eng., 133, 122-128 (2018). https://doi.org/10.1016/j.compositesb.2017.09.017
  22. S. H. Kim, J. H. An, and K. H. Chung, Physicochemical and sensory properties of mooks prepared from cowpea, mungbean and allbanggae, Food Eng. Prog., 17, 226-232 (2015). https://doi.org/10.13050/foodengprog.2013.17.3.226
  23. R. Pereira, A. Carvalho, D. C. Vaz, M. H. Gil, A. Mendes, and P. Bartolo, Development of novel alginate based hydrogel films for wound healing applications, Int. J. Biol. Macromol., 52, 221-230 (2013). https://doi.org/10.1016/j.ijbiomac.2012.09.031
  24. H. G. Youn, J. Y. Je, C. M. Lee, and S. D. Yoon, Inulin/PVA biomaterials using thiamine as an alternative plasticizer, Carbohydr. Polym., 220, 86-97 (2019). https://doi.org/10.1016/j.carbpol.2019.05.056
  25. R. S. Saji, J. C. Prasana, S. Muthu, J. George, T. K. Kuruvilla, and B. R. Raajaaraman, Spectroscopic and quantum computational study naproxen sodium, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 226, 117614 (2020).
  26. A. Saarai, V. Kasparkova, T. Sedlacek, and P. Saha, On the development and chracterisation of crosslinked sodium alginate/gelatine hydrogels, J. Mech. Behav. Biomed. Mater., 18, 152-166 (2013). https://doi.org/10.1016/j.jmbbm.2012.11.010
  27. R. Kizil and J. Irudayaraj, K. Seetharaman, Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy, J. Agric. Food Chem., 50, 3912-3918 (2002). https://doi.org/10.1021/jf011652p
  28. R. G. de Paiva, M. A. de Moraes, F. C. de Godoi, and M. M. Beppu, Multilayer biopolymer membranes containing copper for antibacterial applications, J. Appl. Polym. Sci., 126, E17-E24 (2012). https://doi.org/10.1002/app.36666
  29. P. L. Ritger and N. A. Peppas, A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5, 23-36 (1987). https://doi.org/10.1016/0168-3659(87)90034-4
  30. P. L. Ritger and N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release, 5, 3912-3918 (1987).
  31. B. Singh and N. Sharma, Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery, Carbohydr. Polym., 74, 489-497 (2008). https://doi.org/10.1016/j.carbpol.2008.04.003
  32. C. P. Mora and F. Martinez, Termodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and 7.4, Phys. Chem. Liq., 44, 585-596 (2006). https://doi.org/10.1080/00319100600889715