• Title/Summary/Keyword: Biocontrol agents

Search Result 163, Processing Time 0.025 seconds

Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi

  • Seo, Hye Jeong;Park, Ae Ran;Kim, Seulbi;Yeon, Jehyeong;Yu, Nan Hee;Ha, Sanghyun;Chang, Ji Yoon;Park, Hae Woong;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.662-673
    • /
    • 2019
  • Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 ㎍/ml), lactic acid (7,790 ㎍/ml), malic acid (470 ㎍/ml), and succinic acid (660 ㎍/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.

Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce (상추 균핵병 생물적방제를 위한 Brevibacillus brevis B23과 Bacillus stearothermophilus B42의 선발)

  • Hwang, Ji-Young;Shim, Chang-Ki;Ryu, Kyung-Yeol;Choi, Du-Hoe;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.254-259
    • /
    • 2006
  • Bacillus spp. isolated from mushroom medium wastes were evaluated for their biocontrol potentials on control of Sclerotinia rot of lettuce. The Bacillus isolates were more effectively obtained from waste suspension when directly added into nutrient agar(NA) medium than plating on the agar medium. Totally 42 isolates obtained from the wastes B23 and B42 showed highest antifungal activity against eight fungal pathogens such as Sclerotinia sclerotiorum, Rhizoctonia solani, Pythium ultimum, Phytophthora capsici, Fusarium oxysporum, Colletotrichum gloeosporioides, Cladosporium cucumerinum, and Botrytis cinerea and B23 and B42 were finally selected for further studies. Optimal concentration of the isolates was $10ml(10^7cfu/ml)$ to suppress the Sclerotinia rot of lettuce. Supplements such as starch, glycerol, and egg-yolk successfully maintained the bacterial population for 30 days in vitro and increased bio-control potentials against the disease. The bacterial isolate B23 alone showed 72% control value, furthermore it presented 95% control value when supplemented with 0.2% of starch, glycerol, and egg-yolk. The promising Bacillus isolates B23 and B42 were identified as Brevibacillus brevis and Bacillus stearothermophillus, respectively, based on morphological and physiological characteristics according to API database.

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium (식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제)

  • Lee, Yong Yoon;Lee, Younmi;Kim, Young Soo;Kim, Hyun Sup;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2020
  • Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.

Ecological Characteristics of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae and Their Use as Biocontrol Agents (벼 흰잎마름병균 파지의 생태학적 특성 및 이를 이용한 생물방제)

  • Yu, Sang-Mi;Noh, Tae-Hwan;Kim, Dong-Min;Jeon, Tae-Woog;Lee, Young-Kee;Lee, Se-Won;You, Oh-Jong;Kim, Byung-Seok;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2011
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice growing regions of the world. There are no effective ways of protecting rice from the disease. In this study, the bacteriophage (phage) mixtures infecting Xoo were investigated as biological control agent on BLB. The effects of pH, heat and ultraviolet on the stability of phages were investigated to check and increase the possibility of practical use in the field. Phages were rather stable between pH 5 and pH 10. The infectivity dropped sharply when the phages were incubated at $50^{\circ}C$ and more than 90% of the phages were inactivated after two minutes of ultraviolet treatment. The phages were stable for 7 days at the rice plant leaves, and the phages survived 10 times more than other treatments when mixed with skim milk. Although the skim milk increased the stability of the phages, the control efficacy was not effective. However, the phage mixtures reduced the occurrence of BLB when they were treated with Tecloftalam WP or Acibenzolar-S-methyl simultaneously. The results indicated that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

Physiological Characteristics of Actinomycetes Isolated from Turfgrass Rhizosphere (잔디 근권에서 분리된 Actinomycetes균주의 생리학적 특성)

  • Lee, Jung Han;Min, Gyu Young;Shim, Gyu Yul;Jeon, Chang Wook;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.348-359
    • /
    • 2015
  • Total 443 isolates of actinomycetes were isolated from turfgrass rhizosphere as potential biological control agents. The two isolates (S11 and S4) showed highest cellulase activity with compared to the other isolates that exhibited a clear zone of 1.2 mm around the colony on cellulose agar medium. S12 strain appeared the most active chitin degrading, which exhibited a 1.2 mm of clear zone. The highest proteolytic activity on skim milk agar was which exhibited a 7.5 mm of clear zone by S2 strain. S1 strain from the soli showed siderophore production ability, which exhibited a 0.6 mm of large clear zone on chrome azurol S agar. The antifungal activity of the volatile compound producing by 4 selected actinomycetes was investigated that inhibition rate against Rhizoctonia solani AG2-2 and Sclerotinia homoeocarpa. Growth inhibition effect of S8 isolate against S. homoeocarpa was appeared to 94.8%, S2 to 76.9%, S5 to 46.1% and S12 to 43.5%. The significant inhibition effects on mycelial growth of S. homoeocarpa were shown on media with four strains. The inhibition effect was the highest with S8 strain treatment at 94.8%.

Toxicity and Characteristics of Antifungal Substances Produced by Bacillus amyloliquefaciens IUB158-03 (Bacillus amyloliquefaciens IUB158-03이 생산하는 항진균물질의 생화학적 특성 및 독성)

  • Kim, Hye-Young;Lee, Tae-Soo
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1672-1678
    • /
    • 2009
  • The purified antifungal substances produced by Bacillus amyloliquefaciens IUB158-03 was positive to ninhydrin but negative to aniline, suggesting that the antifungal substance could be a peptide. FAB-MS, UV adsorption spectrum, and amino acid composition analysis revealed that the molecular weight of the antifungal substance was 1042 and that maximal adsorption was at 220 nm and 277 nm. The antifungal substance was composed of $Asn_3$, $Gln_2$, $Ser_1$, $Gly_1$, and $Tyr_1$. The composition and structural characteristics of antifungal substance were analysed by $^1H$-NMR spectrum, $^1H$-COSY, HMQC, which revealed that the compound belongs to the iturin A family. Temperature and pH had little effect on the stability of the antifungal substance in the ranges of $-70{\sim}121^{\circ}C$ and pH 6.0~10.0, respectively. It showed strong antibiotic activity against fungi. An in vitro cytotoxicity test using NIH3T3 cell showed that the antifungal substance does not have cytotoxicity. The number of circulating leukocytes and the hematobiological analysis of the mice administered with the antifungal substances was similar to those of the control group, indicating no cytotoxicity in vivo. Therefore, the antifungal substances extracted from culture broth of Bacillus amyloliquefaciens IUB158-03 have future potential as biocontrol agents against plant diseases caused by fungi.

Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria (식물 생장 촉진 활성을 가진 인산분해 미생물 Pantoea 종의 분리 및 특성 규명)

  • Yun, Chang Yeon;Cheong, Yong Hwa
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1163-1168
    • /
    • 2016
  • Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance due to their agricultural benefits. These microorganisms are potential tools for sustainable agriculture, with effects on plant growth, biofertilization, induced systemic resistance, and biocontrol of plant pathogens. In this study, four different Pantoea species were isolated from field soil, and their plant growth-promoting characteristics were studied. Based on 16S rDNA gene sequencing analyses, the se were grouped into Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans and named as Pa1, Pc1, Pd1, Pv1, respectively. All of these strains have their ability for solubilization of insoluble phosphate depending on pH decrease at the range around pH 5 at 1days after inoculation and production of plant hormone indole acetic acid (IAA) with 85.3±16.3 μg/ml of Pa1, 183.9±16.8 μg/ml of Pc1, 28.8±17.3 μg/ml of Pd1 and 114.1±16.5 μg/ml of Pv1, respectively. Pa1, Pc1 and Pd1 also have high activity for production of gibberellin (GA3) hormone with 331.1±19.2 μg/ml of Pa1, 288.5±16.8 μg/ml of Pc1, 309.2±18.2 μg/ml of Pd1, but Pv1 does not. Furthermore, all these species have significantly promoted the growth of the lettuce seedling plants at the range around 32~37% for fresh weight and 10~15% for shoot length enhancement, so that these microbe could be used as a potential bio-fertilizer agents.

Antifungal and Proteolytic Activity and Auxin Formation of Bacterial Strains Isolated from Highland Forest Soils of Halla Mountain (한라산 고지대 토양에서 분리한 미생물의 항균 및 단백질분해 활성, 오옥신 생산 특성)

  • Kim, Tack-Soo;Ko, Min-Jung;Lee, Se-Weon;Han, Ji-Hee;Park, Kyung-Seok;Park, Jin-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • Bacterial strains were isolated from forest soils of Halla mountain, Jeju island in Korea. The soil samples were collected at each altitude of 100m from 1,000 m above sea level. Total 398 strains were isolated and tested for their physiological characteristics of antagonistic and proteolytic activities, and auxin production. Among the isolates, 172 strains were selected as antifungal strains showing antagonistic activity against at least one of 8 plant fungal pathogens (Alternaria alternata, Botrytis cinerea, Collectotrichum acutatum, Fusarium oxysporum, Phytophthora capsici, Pythium ultimum and Sclerotinia sclerotiorum). In addition 203 strains for proteolytic activity and 26 strains for auxin production were characterized for further study. Je28-4 (Rhodococcus sp.) were showed 80% of control value against tomato gray mold in vivo. Thus, it is suggested that soil bacteria isolated from forest soils of Halla mountain can be important sources of bioactive compounds for improving plant growth or promising biocontrol agents.

Isolation of Nematophagous Fungi against Root-knot Nematode and Their Growth in Vitro (뿌리혹 선충에 대한 기생 천적 진균 분리 및 이들의 생장에 미치는 환경조사)

  • 정미정;김희규
    • Korean journal of applied entomology
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 1988
  • Nematophagous fungi were successfully isolated by baited plating, centrifugation technique of soil, and direct isolation from naturally ingested nematodes. Predominant seven fungi isolated were identified as Artheobotrys arthroboteyides, A.conoides, A. oligospora, Dactylella lobata, Fusatium oxysporum, Monacrosporium ellopsoporum and Harposporium anguillu-lae. Of these, six fungi were tested for cultural characteristics except. H, anguillulae, extre-mely fastidious fungus in artificial media. Among 14 media tested in this experiment, Corn-meal Agar (CMA) and Oatmeal Agar (OMA) were the most suitable media for growing all six nematophagous fungi. Weakly saprophytic M. ellipsospoyum also grew vigoroualy on these two media. The radial growth, dry weight and sporulation of the fungi tested were quite diverse depending on the culture media. D. lobata revealed good growth and abundantly sporulated on Glucoes Peptone Agar (GPA). Although over-all growth of F, oxysporum was not satisfactory on Sucrose Nitrate Agar (SNA), the sporulation was best on this medium. Optimum conditious for mycelial growth and sporulation of nematophagous fungi ranged pH 5-8 and 20-$30^{\circ}C$ on SNA. D. lobata and F, oxysporum grew vigorously and most profusely sporulated on all media tested. They turned out an most promising biocontrol agents for their aggressive growth and sporulation over the ranges of temperature and pH ranges.

  • PDF

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.