• Title/Summary/Keyword: Biochemical Response

Search Result 334, Processing Time 0.031 seconds

Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography

  • Park, Eunsoo;Hong, Suk-Ju;Lee, Ah-Yeong;Park, Jongmin;Cho, Byoung-Kwan;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Purpose: This study was performed to evaluate the feasibility of using an infrared thermography technique for phenotype analysis of pepper seedlings exposed to a low-temperature environment. Methods: We employed an active thermography technique to evaluate the thermal response of pepper seedlings exposed to low-temperature stress. The temperatures of pepper leaves grown in low-temperature conditions ($5^{\circ}C$, relative humidity [RH] 50%) for four periods (6, 12, 24, and 48 h) were measured in the experimental setting ($23^{\circ}C$, RH 70%) as soon as pepper seedling samples were taken out from the low-temperature environment. We also assessed the visible images of pepper seedling samples that were exposed to low-temperature stress to estimate appearance changes. Results: The greatest appearance change was observed for the low-temperature stressed pepper seedlings that were exposed for 12 h, and the temperature from these pepper seedling leaves was the highest among all samples. In addition, the thermal image of low-temperature stressed pepper seedlings for 6 h exhibited the lowest temperature. Conclusions: We demonstrated that the leaf withering owing to the water deficiency that occurred under low-temperature conditions could induce an increase in temperature in plant leaves using the infrared thermography technique. These results suggested that the time-resolved and averaged thermal signals or temperatures of plants could be significantly associated with the physiological or biochemical characteristics of plants exposed to low-temperature stress.

A case of chronic lymphocytic leukemia (CLL) in a Maltese dog

  • Lee, Ji-Yun;Hong, Eun-Sil;Kang, Byeong-Teck;Jung, Dong-in;Park, Chul;Park, Hee-Myung
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.251-254
    • /
    • 2005
  • An 11-year-old, 3.3 kg, male Maltese dog was referred to Veterinary Teaching Hospital of Konkuk University because of diarrhea and severe anemia. Abnormal physical examination findings included left submandibular lymph node enlargement, pale mucous membrane, cataract, and bloody diarrhea. Results of hematologic examination revealed a marked lymphocytosis resulting in leukocytosis and the markedly increased numbers of small, well-differentiated lymphocytes in the peripheral blood. Serum biochemical abnormalities consisted of elevated AST and ALP, hyperphosphatemia, hypoglycemia, and hypoalbuminemia. Radiographic examination showed cardiomegaly and hepatosplenomegaly. Results of urinalysis included bilirubinuria and proteinuria. Based on results of examination described above, chronic lymphocytic leukemia was diagnosed. Chemotherapy was initiated with cyclophosphamide ($300mg/m^2$, IV once every 2 weeks), vincristine ($0.75mg/m^2$, IV once every 2 weeks, alternating weeks with the cyclophosphamide), and plus prednisolone ($50mg/m^2$, PO, SID for a week, then $20mg/m^2$, PO every other day). The response to chemotherapy was partially present. This study first demonstrates clinicopathological findings and chemotherapeutic response of chronic lymphocytic leukemia in Korea.

Effect of SO2 - NO2 fumigation on wooden tree seedlings in open top chamber system

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2014
  • The present study has been performed on one year old tree saplings of Azadirachta indica (L.), Cassia siamea (L.), Dalbergia sissoo (Roxb.), Eucalyptus rostrata (L.), Mangifera indica (L.) and Schyzygium cumini (L.) in order to assess the effect of exposure of $SO_2-NO_2$, alone and combination of two gases. Tree saplings have been exposed to an average of $495{\mu}g\;m^{-3}$ $SO_2$ and $105{\mu}g\;m^{-3}$ $NO_2$ for 40 d at the rate of $4hd^{-1}$ during 10:00 am to 01:00 pm in OTC. Total chlorophyll, specific leaf area (SLA), nitrate reductase (NR) activity, foliar protein, free proline content and free amino acids (AAs) of foliage have been the plant parameters, taken into consideration to evaluate the effect of gaseous exposure. Exposure of two gases has caused reduction in total chlorophyll content (P < 0.05, 0.01). Physiological and biochemical process has been seemed to be altered noticeable due to the combined effect of $SO_2+NO_2$ followed by $SO_2$ alone (P < 0.05, 0.01). $NO_2$ mediated stress has produced, stimulatory and inhibitory responses in tree saplings. Results reveal that tree saplings have been attempted to absorb the $NO_2$ through N assimilation pathway. E. rostrata, C. siamea have been emerged as moderate tolerant to $SO_2$ mediated stress followed by A. indica. Response pattern of S. cumini, M. indica and D. sissoo set them as good indicators of $SO_2-NO_2$ exposure. Effects of two gases on tree saplings have been found to be synergistic.

Physicochemical Quality Changes in Chinese Cabbage with Storage Period and Temperature: A Review

  • Shim, Joon-Yong;Kim, Do-Gyun;Park, Jong-Tae;Kandpal, Lalit Mohan;Hong, Soon-jung;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • Background: Recent inquiries into high-quality foods have discussed the importance of the functional aspects of foods, in addition to traditional quality indicators such as color, firmness, weight, trimming loss, respiration rate, texture, and soluble solid content. Recently, functional Chinese cabbage, which makes up a large portion of the vegetables consumed in Korea, has been identified as an anticancer treatment. However, the investigation of practical issues, such as the effects of storage conditions on quality indicators (including functional compounds), is still limited. Purpose: We reviewed various studies on variations in the quality indicators and functional compounds of Chinese cabbage in response to different storage environments, focusing on storage temperature and storage period. In particular, we emphasized the effect of storage temperature and storage period on glucosinolate (GSL) levels, in order to provide guidelines for optimizing storage environments to maximize GSLs. Additionally, we used response surface methodology to propose experimental designs for future studies exploring the optimal storage conditions for enhancing GSL contents. Review: Large variations in quality indicators were observed depending on the cultivar, the type of storage, the storage conditions, and the harvest time. In particular, GSL content varied with storage conditions, indicating that either low temperatures or adequate air composition by controlled atmospheric storage may preserve GSL levels, as well as prolonging shelf life. Even though genetic and biochemical approaches are preferred for developing functional Chinese cabbage, it is important to establish a practical method for preserving quality for marketability; a prospective study into optimal storage conditions for preserving functional compounds (which can be applied in farms), is required. This may be achievable with the comprehensive meta-analysis of currently published data introduced in this review, or by conducting newly designed experiments investigating the relationship between storage conditions and the levels of functional compounds.

Functional Analysis of the High Affinity Phosphate Transporter Genes Derived from Oryza sativa in Arabidopsis thaliana. (애기장대에서의 벼 유래의 고친화성 인산 운반체 유전자들의 기능 분석)

  • Seo, Hyoun-Mi;Jung, Yun-Hui;Kim, Yun-Hye;Kwon, Tack-Min;Jeong, Soon-Jae;Yi, Young-Byung;Kim, Doh-Hoon;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.488-493
    • /
    • 2008
  • Phosphate, a favorable phosphorous form for plant, is one of major nutrient elements for growth and development in plants. Plants exhibit various physiological and biochemical responses in reaction to phosphate starvation in order to maintain phosphate homeostasis. Of them, expression of high affinity phosphate transporter gene family and efficient uptake of phosphate via them is a major physiological process for adaption to phosphate deficient environment. Although the various genetic resources of high affinity phosphate transporter are identified recently, little is known about their functions in plant that is prerequisite information before applying to crop plants to generate valuable transgenic plants. We demonstrated that Arabidopsis transgenic plants over-expressing two different high affinity phosphate transporter gens, OsPT1 and OsPT7, derived from rice, exhibit better growth responses compared with wild-type under phosphate starvation condition. Specially, OsPT7 gene has proven to be more effective to generate Arabidopsis transgenic plant tolerant to phosphate deficiency than OsPT1. Furthermore, the expression level of AtPT1 gene that is one of reporter genes specifically induced by phosphate starvation was significantly low compared with wild-type during phosphate starvation. Taken together, these results collectively suggest that over expression of OsPTl and OsPT7 genes derived from monocotyledonous plant function efficiently in the dicotyledonous plant, relieving stress response caused by phosphate starvation and leading to better growth rate.

Hypoadrenocorticism in a 1-Year-Old Korean Shorthair Cat

  • Jung, Hansol;Jeong, Yunho;Kim, Yoonhwan;Choi, Sooyoung;Park, Inchul;Ahn, Jin-Ok
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.144-148
    • /
    • 2022
  • A one-year-old spayed female Korean Shorthair cat presented to Kangwon National University Veterinary Hospital with vomiting, weight loss, lethargy, loss of appetite, and polyuria that lasted for more than two weeks. The body condition score, blood pressure, heart rate, and body temperature were abnormally low, and the physical examination findings were consistent with moderate dehydration. Hematological and biochemical tests demonstrated mild azotemia and a low Na:K ratio. Additional abdominal ultrasound imaging revealed reduced size of both adrenal glands. The adrenocorticotropic hormone (ACTH) stimulation test showed decreased post-ACTH cortisol and aldosterone levels and increased endogenous ACTH levels, confirming a diagnosis of primary hypoadrenocorticism. The cat was treated with subcutaneous injections of desoxycorticosterone pivalate (DOCP) and oral prednisolone supplementation, and subsequent electrolyte analysis showed a normal Na:K ratio. Clinical symptoms were also improved in response to treatment. Hypoadrenocorticism in cats is a very rare disease, but it should not be excluded as a potential diagnosis in favor of kidney diseases or other conditions, especially when the Na:K ratio is low. In addition, the prognosis for the disease and the response to DOCP treatment should be further evaluated in cats.

CD11b Deficiency Exacerbates Methicillin-Resistant Staphylococcus aureus-Induced Sepsis by Upregulating Inflammatory Responses of Macrophages

  • Hyunsub Sim;Daecheol Jeong;Hye-In Kim;Seongwon Pak;Bikash Thapa;Hyung-Joo Kwon;Keunwook Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.2
    • /
    • pp.13.1-13.19
    • /
    • 2021
  • Macrophages are important for the first line of defense against microbial pathogens. Integrin CD11b, which is encoded by Itgam, is expressed on the surface of macrophages and has been implicated in adhesion, migration, and cell-mediated cytotoxicity. However, the functional impact of CD11b on the inflammatory responses of macrophages upon microbial infection remains unclear. Here, we show that CD11b deficiency resulted in increased susceptibility to sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA) infection by enhancing the pro-inflammatory activities of macrophages. Upon infection with MRSA, the mortality of Itgam knockout mice was significantly higher than that of control mice, which is associated with increased production of TNF-α and IL-6. In response to MRSA, both bone marrow-derived macrophages and peritoneal macrophages lacking CD11b produced elevated amounts of pro-inflammatory cytokines and nitric oxide. Moreover, CD11b deficiency upregulated IL-4-induced expression of anti-inflammatory mediators such as IL-10 and arginase-1, and an immunomodulatory function of macrophages to restrain T cell activation. Biochemical and confocal microscopy data revealed that CD11b deficiency augmented the activation of NF-κB signaling and phosphorylation of Akt, which promotes the functional activation of macrophages with pro-inflammatory and immunoregulatory phenotypes, respectively. Overall, our experimental evidence suggests that CD11b is a critical modulator of macrophages in response to microbial infection.

The Effect of Vit-D Supplementation on the Side Effect of BioNTech, Pfizer Vaccination and Immunoglobulin G Response Against SARS-CoV-2 in the Individuals Tested Positive for COVID-19: A Randomized Control Trial

  • Hawal Lateef Fateh;Goran Kareem;Shahab Rezaeian;Jalal Moludi;Negin Kamari
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.269-282
    • /
    • 2023
  • Vitamin D participates in the biological function of the innate and adaptive immune system and inflammation. We aim to specify the effectiveness of the vitamin D supplementation on the side effects BioNTech, Pfizer vaccination, and immunoglobulin G response against severe acute respiratory syndrome coronavirus 2 in subjects tested positive for coronavirus disease 2019 (COVID-19). In this multi-center randomized clinical trial, 498 people tested positive for COVID-19 were divided into 2 groups, receiving vitamin D capsules or a placebo (1 capsule daily, each containing 600 IU of vitamin D) over 14-16 weeks. Anthropometric indices and biochemical parameters were measured before and after the second dose of vaccination. Fourteen to 16 weeks after supplementation, the intervention group had an immunoglobulin G (IgG) increase of 10.89 ± 1.2 g/L, while the control group had 8.89 ± 1.3 g/L, and the difference was significant between both groups (p = 0.001). After the second dose of vaccination, the supplement group significantly increased their 25-hydroxy vitamin D from initially 28.73 ± 15.6 ng/mL and increased to 46.48 ± 27.2 ng/mL, and the difference between them was significant. Those with a higher body mass index (BMI) had the most of symptoms, and the difference of side effects according to BMI level was significantly different. In 8 weeks after supplementation obese participants had the lowest IgG levels than overweight or normal subjects. The proportion of all types of side effects on the second dose was significantly diminished compared with the first dose in the intervention group. Supplementation of 600 IU of vitamin D3 can reduce post-vaccination side effects and increase IgG levels in participants who received BioNTech, Pfizer vaccine.

N-recognins UBR1 and UBR2 as central ER stress sensors in mammals

  • Ly Thi Huong Luu Le;Seoyoung Park;Jung Hoon Lee;Yun Kyung Kim;Min Jae Lee
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100001.1-100001.8
    • /
    • 2024
  • In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF