DOI QR코드

DOI QR Code

N-recognins UBR1 and UBR2 as central ER stress sensors in mammals

  • Ly Thi Huong Luu Le (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Seoyoung Park (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Jung Hoon Lee (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Yun Kyung Kim (Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Min Jae Lee (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Received : 2023.10.20
  • Accepted : 2023.11.22
  • Published : 2024.01.31

Abstract

In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.

Keywords

Acknowledgement

We thank T. Tasaki and Y. T. Kwon for UBR-related plasmids and MEFs. This work was supported by grants from the National Research Foundation of Korea (2021R1A2C2008023, 2020R1A5A1019023, and RS-2023-00261784 to M.J.L.; 2021R1I1A1A01051245 to J.H.L.).

References

  1. An, J.Y., Seo, J.W., Tasaki, T., Lee, M.J., Varshavsky, A., and Kwon, Y.T. (2006). Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 103, 6212-6217. https://doi.org/10.1073/pnas.0601700103
  2. Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Aminoterminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
  3. Choi, W.H., Yun, Y., Byun, I., Kim, S., Lee, S., Sim, J., Levi, S., Park, S.H., Jun, J., Kleifeld, O., et al. (2023). ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep. 42, Article 112701.
  4. Crawford, E.D., and Wells, J.A. (2011). Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055-1087. https://doi.org/10.1146/annurev-biochem-061809-121639
  5. de Bie, P., and Ciechanover, A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 18, 1393-1402. https://doi.org/10.1038/cdd.2011.16
  6. Decca, M.B., Carpio, M.A., Bosc, C., Galiano, M.R., Job, D., Andrieux, A., and Hallak, M.E. (2007). Post-translational arginylation of calreticulin - A new isospecies of calreticulin component of stress granules. J. Biol. Chem. 282, 8237-8245. https://doi.org/10.1074/jbc.M608559200
  7. Deka, K., Singh, A., Chakraborty, S., Mukhopadhyay, R., and Saha, S. (2016). Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov. 2, e16074.
  8. Heck, J.W., Cheung, S.K., and Hampton, R.Y. (2010a). Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. U.S.A. 107, 1106-1111. https://doi.org/10.1073/pnas.0910591107
  9. Hegde, R.S., and Ploegh, H.L. (2010). Quality and quantity control at the endoplasmic reticulum. Curr. Opin. Cell Biol. 22, 437-446. https://doi.org/10.1016/j.ceb.2010.05.005
  10. Jeon, J.H., Oh, T.R., Park, S., Huh, S., Kim, J.H., Mai, B.K., Lee, J.H., Kim, S.H., and Lee, M.J. (2021). The antipsychotic drug clozapine suppresses the RGS4 polyubiquitylation and proteasomal degradation mediated by the Arg/N-Degron pathway. Neurotherapeutics, 18, 1768-1782. https://doi.org/10.1007/s13311-021-01039-0
  11. Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937-953. https://doi.org/10.1042/BST0370937
  12. Lee, J.H., Jiang, Y., Kwon, Y.T., and Lee, M.J. (2015). Pharmacological modulation of the N-end rule pathway and its therapeutic implications. Trends Pharmacol. Sci. 36, 782-797.
  13. Lee, M.J., Kim, D.E., Zakrzewska, A., Yoo, Y.D., Kim, S.H., Kim, S.T., Seo, J.W., Lee, Y.S., Dorn, G.W., 2nd, Oh, U., et al. (2012). Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J. Biol. Chem. 287, 24043-24052. https://doi.org/10.1074/jbc.M112.364117
  14. Lee, M.J., Pal, K., Tasaki, T., Roy, S., Jiang, Y., An, J.Y., Banerjee, R., and Kwon, Y.T. (2008). Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 105, 100-105. https://doi.org/10.1073/pnas.0708465105
  15. Nguyen, K.T., Ju, S., Kim, S.Y., Lee, C.S., Lee, C., and Hwang, C.S. (2022). N-Terminal modifications of ubiquitin via methionine excision, deamination, and arginylation expand the ubiquitin code. Mol. Cells, 45, 158-167. https://doi.org/10.14348/molcells.2022.2027
  16. Nillegoda, N.B., Theodoraki, M.A., Mandal, A.K., Mayo, K.J., Ren, H.Y., Sultana, R., Wu, K., Johnson, J., Cyr, D.M., and Caplan, A.J. (2010). Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell, 21, 2102-2116. https://doi.org/10.1091/mbc.e10-02-0098
  17. Phillips, B.P., Gomez-Navarro, N., and Miller, E.A. (2020). Protein quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 65, 96-102. https://doi.org/10.1016/j.ceb.2020.04.002
  18. Powers, E.T., and Balch, W.E. (2013). Diversity in the origins of proteostasis networks-a driver for protein function in evolution. Nat. Rev. Mol. Cell Biol. 14, 237-248. https://doi.org/10.1038/nrm3542
  19. Ruggiano, A., Foresti, O., and Carvalho, P. (2014). Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204, 869-879. https://doi.org/10.1083/jcb.201312042
  20. Sehgal, P., Szalai, P., Olesen, C., Praetorius, H.A., Nissen, P., Christensen, S.B., Engedal, N., and Moller, J.V. (2017). Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase by thapsigargin analogs induces cell death via ER Ca(2+) depletion and the unfolded protein response. J. Biol. Chem. 292, 19656-19673. https://doi.org/10.1074/jbc.M117.796920
  21. Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and stoichiometries by N-terminal acetylation and the Nend rule pathway. Mol. Cell, 50, 540-551. https://doi.org/10.1016/j.molcel.2013.03.018
  22. Stolz, A., Besser, S., Hottmann, H., and Wolf, D.H. (2013a). Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation. Proc. Natl. Acad. Sci. U.S.A. 110, 15271-15276. https://doi.org/10.1073/pnas.1304928110
  23. Summers, D.W., Wolfe, K.J., Ren, H.Y., and Cyr, D.M. (2013). The type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One, 8, Article e52099.
  24. Szoradi, T., Schaeff, K., Garcia-Rivera, E.M., Itzhak, D.N., Schmidt, R.M., Bircham, P.W., Leiss, K., Diaz-Miyar, J., Chen, V.K., Muzzey, D., et al. (2018). SHRED is a regulatory cascade that reprograms Ubr1 substrate specificity for enhanced protein quality control during stress. Mol. Cell, 70, 1025-1037.
  25. Tasaki, T., and Kwon, Y.T. (2007). The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520-528. https://doi.org/10.1016/j.tibs.2007.08.010
  26. Wang, B.B., Xu, H., Isenmann, S., Huang, C., Elorza-Vidal, X., Rychkov, G.Y., Estevez, R., Schittenhelm, R.B., Lukacs, G.L., and Apaja, P.M. (2022). Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca(2+)-induced proteostasis disease stress. Cell. Mol. Life Sci. 79, Article 167.
  27. Wang, M., and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 14, 581-597. https://doi.org/10.1038/nrc3800
  28. Yoon, D., Moon, J.H., Cho, A., Boo, H., Cha, J.S., Lee, Y., and Yoo, J. (2023). Structure-based insight on the mechanism of N-glycosylation inhibition by tunicamycin. Mol. Cells, 46, 337-344. https://doi.org/10.14348/molcells.2023.0001
  29. Zhou, Z.X., Wang, Q., and Michalak, M. (2021). Inositol requiring enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim. Cells Syst. 25, 347-357. https://doi.org/10.1080/19768354.2021.2020901