Acknowledgement
We thank T. Tasaki and Y. T. Kwon for UBR-related plasmids and MEFs. This work was supported by grants from the National Research Foundation of Korea (2021R1A2C2008023, 2020R1A5A1019023, and RS-2023-00261784 to M.J.L.; 2021R1I1A1A01051245 to J.H.L.).
References
- An, J.Y., Seo, J.W., Tasaki, T., Lee, M.J., Varshavsky, A., and Kwon, Y.T. (2006). Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 103, 6212-6217. https://doi.org/10.1073/pnas.0601700103
- Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Aminoterminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
- Choi, W.H., Yun, Y., Byun, I., Kim, S., Lee, S., Sim, J., Levi, S., Park, S.H., Jun, J., Kleifeld, O., et al. (2023). ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep. 42, Article 112701.
- Crawford, E.D., and Wells, J.A. (2011). Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055-1087. https://doi.org/10.1146/annurev-biochem-061809-121639
- de Bie, P., and Ciechanover, A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 18, 1393-1402. https://doi.org/10.1038/cdd.2011.16
- Decca, M.B., Carpio, M.A., Bosc, C., Galiano, M.R., Job, D., Andrieux, A., and Hallak, M.E. (2007). Post-translational arginylation of calreticulin - A new isospecies of calreticulin component of stress granules. J. Biol. Chem. 282, 8237-8245. https://doi.org/10.1074/jbc.M608559200
- Deka, K., Singh, A., Chakraborty, S., Mukhopadhyay, R., and Saha, S. (2016). Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov. 2, e16074.
- Heck, J.W., Cheung, S.K., and Hampton, R.Y. (2010a). Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. U.S.A. 107, 1106-1111. https://doi.org/10.1073/pnas.0910591107
- Hegde, R.S., and Ploegh, H.L. (2010). Quality and quantity control at the endoplasmic reticulum. Curr. Opin. Cell Biol. 22, 437-446. https://doi.org/10.1016/j.ceb.2010.05.005
- Jeon, J.H., Oh, T.R., Park, S., Huh, S., Kim, J.H., Mai, B.K., Lee, J.H., Kim, S.H., and Lee, M.J. (2021). The antipsychotic drug clozapine suppresses the RGS4 polyubiquitylation and proteasomal degradation mediated by the Arg/N-Degron pathway. Neurotherapeutics, 18, 1768-1782. https://doi.org/10.1007/s13311-021-01039-0
- Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937-953. https://doi.org/10.1042/BST0370937
- Lee, J.H., Jiang, Y., Kwon, Y.T., and Lee, M.J. (2015). Pharmacological modulation of the N-end rule pathway and its therapeutic implications. Trends Pharmacol. Sci. 36, 782-797.
- Lee, M.J., Kim, D.E., Zakrzewska, A., Yoo, Y.D., Kim, S.H., Kim, S.T., Seo, J.W., Lee, Y.S., Dorn, G.W., 2nd, Oh, U., et al. (2012). Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J. Biol. Chem. 287, 24043-24052. https://doi.org/10.1074/jbc.M112.364117
- Lee, M.J., Pal, K., Tasaki, T., Roy, S., Jiang, Y., An, J.Y., Banerjee, R., and Kwon, Y.T. (2008). Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 105, 100-105. https://doi.org/10.1073/pnas.0708465105
- Nguyen, K.T., Ju, S., Kim, S.Y., Lee, C.S., Lee, C., and Hwang, C.S. (2022). N-Terminal modifications of ubiquitin via methionine excision, deamination, and arginylation expand the ubiquitin code. Mol. Cells, 45, 158-167. https://doi.org/10.14348/molcells.2022.2027
- Nillegoda, N.B., Theodoraki, M.A., Mandal, A.K., Mayo, K.J., Ren, H.Y., Sultana, R., Wu, K., Johnson, J., Cyr, D.M., and Caplan, A.J. (2010). Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell, 21, 2102-2116. https://doi.org/10.1091/mbc.e10-02-0098
- Phillips, B.P., Gomez-Navarro, N., and Miller, E.A. (2020). Protein quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 65, 96-102. https://doi.org/10.1016/j.ceb.2020.04.002
- Powers, E.T., and Balch, W.E. (2013). Diversity in the origins of proteostasis networks-a driver for protein function in evolution. Nat. Rev. Mol. Cell Biol. 14, 237-248. https://doi.org/10.1038/nrm3542
- Ruggiano, A., Foresti, O., and Carvalho, P. (2014). Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204, 869-879. https://doi.org/10.1083/jcb.201312042
- Sehgal, P., Szalai, P., Olesen, C., Praetorius, H.A., Nissen, P., Christensen, S.B., Engedal, N., and Moller, J.V. (2017). Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase by thapsigargin analogs induces cell death via ER Ca(2+) depletion and the unfolded protein response. J. Biol. Chem. 292, 19656-19673. https://doi.org/10.1074/jbc.M117.796920
- Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and stoichiometries by N-terminal acetylation and the Nend rule pathway. Mol. Cell, 50, 540-551. https://doi.org/10.1016/j.molcel.2013.03.018
- Stolz, A., Besser, S., Hottmann, H., and Wolf, D.H. (2013a). Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation. Proc. Natl. Acad. Sci. U.S.A. 110, 15271-15276. https://doi.org/10.1073/pnas.1304928110
- Summers, D.W., Wolfe, K.J., Ren, H.Y., and Cyr, D.M. (2013). The type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One, 8, Article e52099.
- Szoradi, T., Schaeff, K., Garcia-Rivera, E.M., Itzhak, D.N., Schmidt, R.M., Bircham, P.W., Leiss, K., Diaz-Miyar, J., Chen, V.K., Muzzey, D., et al. (2018). SHRED is a regulatory cascade that reprograms Ubr1 substrate specificity for enhanced protein quality control during stress. Mol. Cell, 70, 1025-1037.
- Tasaki, T., and Kwon, Y.T. (2007). The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520-528. https://doi.org/10.1016/j.tibs.2007.08.010
- Wang, B.B., Xu, H., Isenmann, S., Huang, C., Elorza-Vidal, X., Rychkov, G.Y., Estevez, R., Schittenhelm, R.B., Lukacs, G.L., and Apaja, P.M. (2022). Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca(2+)-induced proteostasis disease stress. Cell. Mol. Life Sci. 79, Article 167.
- Wang, M., and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 14, 581-597. https://doi.org/10.1038/nrc3800
- Yoon, D., Moon, J.H., Cho, A., Boo, H., Cha, J.S., Lee, Y., and Yoo, J. (2023). Structure-based insight on the mechanism of N-glycosylation inhibition by tunicamycin. Mol. Cells, 46, 337-344. https://doi.org/10.14348/molcells.2023.0001
- Zhou, Z.X., Wang, Q., and Michalak, M. (2021). Inositol requiring enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim. Cells Syst. 25, 347-357. https://doi.org/10.1080/19768354.2021.2020901