• Title/Summary/Keyword: Bioactive herbal compounds

Search Result 68, Processing Time 0.029 seconds

Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: A Review

  • Hosseini, Azar;Sahebkar, Amirhossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.243-256
    • /
    • 2017
  • Doxorubicin as a chemotherapeutic drug is widely used for the treatment of patients with cancer. However, clinical use of this drug is hampered by its cardiotoxicity, which is manifested as electrocardiographic abnormalities, arrhythmias, irreversible degenerative cardiomyopathy and congestive heart failure. The precise mechanisms underlying the cardiotoxicity of doxorubicin are not clear, but impairment of calcium homeostasis, generation of iron complexes, production of oxygen radicals, mitochondrial dysfunction and cell membrane damage have been suggested as potential etiologic factors. Compounds that can neutralize the toxic effect of doxorubicin on cardiac cells without reducing the drug's antitumor activity are needed. In recent years, numerous studies have shown that herbal medicines and bioactive phytochemicals can serve as effective add-on therapies to reduce the cardiotoxic effects of doxorubicin. This review describes different phytochemicals and herbal products that have been shown to counterbalance doxorubicin-induced cardiotoxicity.

Antioxidant Potential of Cinnamomum cassia Ethanolic Extract: Identification Of Compounds (계피 에탄올 추출물의 유효성분 분석 및 항산화 효능 평가)

  • Ji Woong Heo;Jae Dong Son;Ye Jin Yang;Min Jung Kim;Ju Hye Yang;Kwang Il Park
    • Herbal Formula Science
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2024
  • Objectives : Natural products containing bioactive compounds with high antioxidant activity are potentially important sources that can contribute to the improvement of various diseases. Therefore, the aim of this study was to investigate phenolic compounds of Cinnamomum cassia (C. cassia) ethanolic extract (CCEE). And then we evaluated the antioxidant effect. Methods : We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the compounds in CCEE. LC-MS/MS was performed in positive ion mode using Shimadzu, Nexera HPLC system and IDA TOF mass system. Solvent A was distilled water and solvent B was acetonitrile as mobile phase. The analysis was performed at a flow rate of 0.5 ml/min, column temperature of 35 ℃ and wavelength of 284 nm. The antioxidant effect of CCEE was analyzed using DPPH (2,2-diphenyl-2-picrylhydrazyl free radical) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). In addition, total phenolics and total flavonoids contents were measured to determine antioxidant effects. Results : Analysis using LC-MS/MS identified four compounds: Coumarin, Trans-cinnamaldehyde, Trans-cinnamic acid, and 2-Methoxycinnamaldehyde. Free radicals decreased in a concentration-dependent manner starting from 10 ㎍/ml of CCEE, and decreased to a level similar to Ascorbic acid (AA) from a concentration of 60 ㎍/ml onwards. Conclusions : Based on the findings, CCEE exhibits strong antioxidant activity as evidenced by the presence of Coumarin, Trans-cinnamaldehyde, Trans-cinnamic acid, and 2-Methoxycinnamaldehyde. Consequently, this study suggests that CCEE can serve as an important source of natural antioxidants and can be efficiently used in the management of oxidative stress diseases.

Cytotoxic and Antimicrobial Activities of Bioactive Monoterpenophenols

  • Oh In Kio;Lee Hyun Ok;Ahn Jong Woong;Kim Hyung Min;Shin Ji Hee;Lim Jin A;Chun Hyun Ja;Baek Seung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1270-1276
    • /
    • 2002
  • Compounds 1 - 12 were tested for their growth inhibitory effects against tumor cell lines using two different 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and sulforhodamine B protein (SRB) assays and antimicrobial activity. The cytotoxic activity of methyl-4-[{(2E)-3,7-dimethyl-2,6-octadienyl}oxy]-3-methoxy benzoate (1) exhibit more active than that of 5-fluorouracil (11) on human oral epithelioid carcinoma (KB, ATCC No. OCL 17) cell lines. But this compound (1) on human skin melanoma (SK-MEL-3, HBT 69) cell lines shows less active than that of adriamycin (12). However, compound 9 showed the antimicrobial activity against S. epidermidis (MIC, 15.625 ㎍/㎖), S. aureus, C. albicans (MIC, 31.25 ㎍/㎖), S. mutans, S. typhimurium, P. putida (MIC. 125 ㎍/㎖) and P. aeruginosa (MIC, 500 ㎍/㎖).

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M.;MohamadZin, Noraziah;Jalil, Juriyati;Sidik, Nik Marzuki;Ahmad, Siti Junaidah;Kamal, Nurkhalida;Edrada-Ebel, RuAngelie
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1249-1256
    • /
    • 2017
  • In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Rational and efficient approach to the preparation of the active fractions of Scutellaria baicalensis (황금(Scutellaria baicalensis) 유효분획물 제조의 합리적이고 효율적인 접근방법)

  • Kim, Doo-Young;Kim, Won Jun;Kim, Jung-Hee;Oh, Sei-Ryang;Ryu, Hyung Won
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Scutellaria baicalensis Georgi (Scutellariae Radix) has been widely used as a dietary ingredient and traditional herbal medicine such as diuretic, hyperlipidemia, antibacterial, anti-allergy, anti-inflammatory and anticancer properties. In this study, the isolation of biomarkers or bioactive compounds from complex S. baicalensis extracts represents an essential step for de novo identification and bioactivity assessment. The bioactive fraction consisted of eight compounds which was chromatographed on an analytical high performance liquid chromatography column using two different gradient runs. A simulative replacement of the analytical column with a medium pressure liquid chromatography and open column allowed the determination of gradient profile to allow sufficient separation in the preparative scale. From the optimized method, eight standard compounds have been identified in the fractions. In addition, MS, UV, HRMS detection was provided by ultraperformance liquid chromatographyequadrupole time-of-flight mass spectrometry (UPLC-QTof-MS) of all fractions. Therefore, this scale up procedure was successfully applied to a S. baicalensis extract.

Physicochemical Characterization of Extrudate Solid Formulation of Angelica gigas Nakai Prepared by Hot Melt Extrusion Process

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Koo, Ja Seong;Park, Cheol Ho;Kang, Wie Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.72-72
    • /
    • 2018
  • The root of Angelica gigas Nakai (AGN) is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, a major challenge associated with the usage of the active compounds from AGN is their poor water solubility. Therefore, this work aimed to enhance the solubility of active compounds by a chemical (viz. surfactant) and physical (hot melt extrusion) crosslinking method (CPC). Infrared Fourier transform spectroscopy (FT-IR) revealed multiple peaks in extrudate solids representing new functional groups including carboxylic acid, alkynes and benzene derivatives. Differential scanning calorimetry (DSC) analysis of the extrudate showed lower glass transition temperature (Tg) and lower enthalpy (${\Delta}H$) (Tg: $43^{\circ}C$; ${\Delta}H$: <6 (J/g)) compared to the non-extrudate (Tg $68.5^{\circ}C$; ${\Delta}H$: 123.2) formulations. X-ray powder diffraction (XRD) analysis revealed amorphization of crystal materials in extrudate solid. In addition, nanonization, enhanced solubility and higher extraction of phenolic compounds were achieved in the extrudate solid. Among the different extrudates, acetic acid- and Span 80-mediated formulations showed superior extractions. We conclude that the CPC method successfully enhanced the production of amorphous nano dispersions from extrudate solid formulations.

  • PDF

Rubia cordifolia: a review

  • Patil, Rupali;Mohan, Mahalaxmi;Kasture, Veena;Kasture, Sanjay
    • Advances in Traditional Medicine
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Medicinal herbs are significant source of synthetic and herbal drugs. In the commercial market, medicinal herbs are used as raw drugs, extracts or tinctures. Isolated active constituents are used for applied research. For the last few decades, phytochemistry (study of plants) has been making rapid progress and herbal products are becoming popular. According to Ayurveda, the ancient healing system of India, the classical texts of Ayurveda, Charaka Samhita and Sushruta Samhita were written around 1000 B.C. The Ayurvedic Materia Medica includes 600 medicinal plants along with therapeutics. Herbs like turmeric, fenugreek, ginger, garlic and holy basil are integral part of Ayurvedic formulations. The formulations incorporate single herb or more than two herbs (poly-herbal formulations). Medicinal herb contains multitude of chemical compounds like alkaloids, glycosides, saponins, resins, oleoresins, sesquiterpene, lactones and oils (essential and fixed). Today there is growing interest in chemical composition of plant based medicines. Several bioactive constituents have been isolated and studied for pharmacological activity. R. cordifolia is an important medicinal plant commonly used in the traditional and Ayurvedic system of medicine for treatment of different ailments. This review illustrates its major constituents, pharmacological actions substantiating the claims made about this plant in the traditional system of medicine and its clinical applications.

Evaluation of Solvent Extraction on the Anti-Inflammatory Efficacy of Glycyrrhiza uralensis (감초의 추출용매별 항염증 효능 평가 연구)

  • Yoon, Tae-Sook;Cheon, Myeong-Sook;Kim, Seung-Ju;Lee, A-Yeong;Moon, Byeong-Cheol;Chun, Jin-Mi;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • Glycyrrhiza uralensis (Leguminosae) is a well-known herbal medicine that has long been valued as a demulcent to relieve inflammatory disorders. To compare the influence of different solvents on the anti-inflammatory efficacy of G. uralensis, we measured the inhibition of pro-inflammatory mediators such as NO, TNF-$\alpha$, and $PGE_2$ in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells by extracts produced using different solvents (water, methanol, ethanol, or n-hexane). The results showed that methanol was the most effective solvent for the inhibition of both NO and $PGE_2$ production in RAW 264.7 cells. However, there was no difference among the extracts for inhibition of TNF-$\alpha$. Further study must be performed for the analysis of correlation between the anti-inflammatory activity of extracts produced using different solvents and the content of major bioactive compounds in G. uralensis, such as glycyrrhizin and liquiritin. The present study suggests that methanol may be a more appropriate solvent of G. uralensis than other solvents (water, ethanol, and n-hexane) to yield the greatest anti-inflammatory activity for food additives and medicine.

Comparison of whitening effect of Rubus coreanus fruit according to maturity (성숙도에 따른 복분자 열매의 미백 활성 비교)

  • Park, Jeong-Yong;Lee, Ji Yeon;Seo, Kyung Hye;Jang, Gwi Young;Lee, Seung Eun;Ji, Yun-Jeong;Kim, Hyung Don
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • Purpose: The Rubus coreanus fruit (RF) is an important traditional medicinal herb having antioxidant, anti-inflammatory, and immunoregulatory properties. These activities are known to change dramatically, depending on maturity of the RF. It is presumed that change of functional components, such as flavonoids, tannins, phenolic acids, triterpenoids and organic acids in RF, affect the various bioactivities. This study aimed to confirm changes in the anti-melanogenic effects of RF based on maturity, and to identify the bioactive compounds responsible. Methods: The cell viability of mature RF (MRF) and immature RF (IRF) extracts was investigated using B16F10 cells. To compare the anti-melanogenic effect of MRF and IRF extracts, we first assessed the melanin content. High-performance liquid chromatography analysis was performed to evaluate changes in the level of ellagic acid according to maturity of the RF. In addition, tyrosinase inhibitory activity of both extracts was examined. Results: MRF and IRF extracts (50-200 ㎍/mL) do not affect the cell viability of B16F10 melanoma cells. IRF extract more effectively inhibited melanin synthesis than MRF extract. The content of ellagic acid in IRF extract was higher than that obtained in MRF extract. Furthermore, greater inhibition of tyrosinase activity was observed after exposure to IRF extract than MRF extract. A positive correlation was determined between ellagic acid content and tyrosinase inhibitory activity, and a negative correlation was obtained between ellagic acid content and melanin content. Taken together, our results indicate that ellagic acid is one of the major bioactive compounds of RF that imparts a whitening effect. Conclusion: Our results indicate that ellagic acid in MRF and IRF extracts affect the anti-melanogenesis effect through inhibition of tyrosinase activity. Therefore, the ellagic acid rich IRF has greater potential for application as a natural and functional cosmetic material.

Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases (황련해독탕(黃連解毒湯)의 뇌질환 응용 가능성 탐색을 위한 네트워크 약리학적 분석)

  • Lee, Se-Eun;Lim, Jae-Yu;Chung, Byung-Woo;Lee, Byoungho;Lim, Jung Hwa;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.