DOI QR코드

DOI QR Code

Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases

황련해독탕(黃連解毒湯)의 뇌질환 응용 가능성 탐색을 위한 네트워크 약리학적 분석

  • Received : 2020.09.23
  • Accepted : 2020.11.25
  • Published : 2020.11.30

Abstract

Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.

Keywords

References

  1. Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:e4. doi: 10.1017/erm.2018.3.
  2. Burke A, Wong YY, Clayson Z. Traditional medicine in China today: implications for indigenous health systems in a modern world. Am J Public Health. 2003;93(7):1082-4. doi:10.2105/ajph.93.7.1082.
  3. Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016;21(5): 559. doi:10.3390/molecules21050559.
  4. Yu W, Li Z, Long F, Chen W, Geng Y, Xie Z, Yao M, Han B, Liu T. A systems pharmacology approach to determine active compounds and action mechanisms of Xipayi Kuijie'an enema for treatment of ulcerative colitis. Sci Rep. 2017;7(1):1189. doi: 10.1038/s41598-017-01335-w. Erratum in: Sci Rep. 2018;8(1):4255.
  5. Wang H. A new strategy for integrated urban water management in China: Sponge city. Science China Technological Sciences. 2018; 61(3):317-29. https://doi.org/10.1007/s11431-017-9170-5
  6. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13.
  7. Huang SJ, Mu F, Li F, Wang WJ, Zhang W, Lei L, Ma Y, Wang JW. Systematic elucidation of the potential mechanism of Erzhi pill against drug-induced liver injury via network pharmacology approach. Evid Based Complement Alternat Med. 2020;2020:6219432. doi:10.1155/2020/6219432.
  8. Wu Q, Cai C, Guo P, Chen M, Wu X, Zhou J, Luo Y, Zou Y, Liu AL, Wang Q, Kuang Z, Fang J. In silico identification and mechanism exploration of hepatotoxic ingredients in traditional Chinese medicine. Front Pharmacol. 2019;10:458. doi: 10.3389/fphar.2019.00458.
  9. Yang L, Liu W, Hu Z, Yang M, Li J, Fan X, Pan H. A systems pharmacology approach for identifying the multiple mechanisms of action of the Wei Pi Xiao decoction for the treatment of gastric precancerous lesions. Evid Based Complement Alternat Med. 2019; 2019:1562707. doi: 10.1155/2019/1562707.
  10. Zhang J, Huang Q, Zhao R, Ma Z. A network pharmacology study on the Tripteryguim wilfordii Hook for treatment of Crohn's disease. BMC Complement Med Ther. 2020; 20(1):95. doi:10.1186/s12906-020-02885-9.
  11. Yi F, Sun L, Xu LJ, Peng Y, Liu HB, He CN, Xiao PG. In silico approach for anti-thrombosis drug discovery: P2Y1R structure- based TCMs screening. Front Pharmacol. 2017;7:531. doi:10.3389/fphar.2016.00531.
  12. Li Y, Jiang X, Song L, Yang M, Pan J. Anti-apoptosis mechanism of triptolide based on network pharmacology in focal segmental glomerulosclerosis rats. Biosci Rep. 2020;40(4):BSR20192920. doi:10.1042/BSR20192920.
  13. Lu X, Wu X, Jing L, Tao L, Zhang Y, Huang R, Zhang G, Ren J. Network pharmacology analysis and experiments validation of the inhibitory effect of JianPi Fu recipe on colorectal cancer LoVo cells metastasis and growth. Evid Based Complement Alternat Med. 2020;2020:4517483. doi: 10.1155/2020/4517483.
  14. Hur J. Donguibogam. Namsandang. 2007;382.
  15. Kong MJ, Ha NN, Lee H, Kim Y, Rho SJ, Kim H. Effect of Hwangryunhaedok-tang and its modified prescription on the recovery of spatial cognitive function in the brain ischemia induced by four-vessel occlusion in rats. The Korea Journal of Herbology. 2004;19(4):161.
  16. Moon JY. Effects of Hwangryunhaedok-tang on DNA damage, antioxidant enzymes expression and acetylcholinesterase activity. The Korea Journal of Herbology. 2007;22(1):7-12.
  17. Kim D, Park SJ, Jung JY, Kim S, Byun SH. Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPSactivated macrophage cells. The Korea Journal of Herbology. 2009;24(4):39-47.
  18. Kwak DH, Lee JH, Kim DG, Kim T, Lee KJ, Ma JY. Inhibitory effects of Hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation. Evid Based Complement Alternat Med. 2013;2013:413906. doi: 10.1155/2013/413906.
  19. Yu YL, Lu SS, Yu S, Liu YC, Wang P, Xie L, Wang GJ, Liu XD. Huang-lian-jie-du-decoction modulates glucagon-like peptide-1 secretion in diabetic rats. J Ethnopharmacol. 2009;124(3):444-9. doi: 10.1016/j.jep.2009.05.027.
  20. Lee B, Han K, Park HJ, Kim AR, Kwon OJ, Yang C, Cho CS. Efficacy of Hwangryunhaedok-tang(Huang-lian-jie-du-tang, Oren-gedoku-to) for patients with hyperlipidemia: a study protocol for a randomized, double-blind, placebo-controlled, parallel, investigator-initiated clinical trial. Trials. 2020;21(1):750. doi:10.1186/s13063-020-04695-3.
  21. Wu J, Luo Y, Deng D, Su S, Li S, Xiang L, Hu Y, Wang P, Meng X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J Cell Mol Med. 2019;23(12):7946-7960. doi: 10.1111/jcmm. 14725.
  22. Hao P, Xiong YY, Wu HZ, Yang YF. Network pharmacology research and preliminary verification of Gegen Qinlian decoction for the treatment of non-alcoholic fatty liver disease. Natural Product Communications. 2020;15(5):1934578X20920023.
  23. Yang N, Sun RB, Chen XL, Zhen L, Ge C, Zhao YQ, He J, Geng JL, Guo JH, Yu XY, Fei F, Feng SQ, Zhu XX, Wang HB, Fu FH, Aa JY, Wang GJ. In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine. Acta Pharmacol Sin. 2017;38(3): 351-361. doi: 10.1038/aps.2016.120.
  24. Yu M, Ren L, Liang F, Zhang Y, Jiang L, Ma W, Li C, Li X, Ye X. Effect of epiberberine from Coptis chinensis Franch on inhibition of tumor growth in MKN-45 xenograft mice. Phytomedicine. 2020;76:153216. doi:10.1016/j.phymed.2020.153216.
  25. Choi JS, Kim JH, Ali MY, Jung HJ, Min BS, Choi RJ, Kim GD, Jung HA. Anti- adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways. Arch Pharm Res. 2015;38(12):2153-62. doi: 10.1007/s12272-015-0626-3.
  26. Bernard MP, Phipps RP. Inhibition of cyclooxygenase-2 impairs the expression of essential plasma cell transcription factors and human B-lymphocyte differentiation. Immunology. 2010;129(1):87-96. doi:10.1111/ j.1365-2567.2009.03152.x.
  27. Norregaard R, Kwon TH, Frokiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract. 2015;34(4):194-200. doi:10.1016/j.krcp.2015.10.004.
  28. Williams C, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18(55):7908-16. https://doi.org/10.1038/sj.onc.1203286
  29. Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127-37. https://doi.org/10.1097/00001813-200202000-00003
  30. Crosby CG, Dubois R. The cyclooxygenase-2 pathway as a target for treatment or prevention of cancer. Expert Opinion on Emerging Drugs. 2003;8(1):1-7. https://doi.org/10.1517/14728214.8.1.1
  31. Hoter A, El-Sabban ME, Naim HY. The Hsp90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. doi: 10.3390/ijms19092560.
  32. Turnham RE, Scott JD. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene. 2016;577(2): 101-8. doi: 10.1016/j.gene.2015.11.052.
  33. Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schüle R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U. A chemical probe for tudor domain protein spindlin1 to investigate chromatin function. J Med Chem. 2019; 62(20):9008-25. doi:10.1021/acs.jmedchem. 9b00562.
  34. Bae N, Gao M, Li X, Premkumar T, Sbardella G, Chen J, Bedford MT. A transcriptional coregulator, SPIN.DOC, attenuates the coactivator activity of Spindlin1. J Biol Chem. 2017;292(51):20808-17. doi: 10.1074/jbc.M117.814913.
  35. Martin-Vicente M, Medrano LM, Resino S, Garcia-Sastre A, Martinez I. TRIM25 in the regulation of the antiviral innate immunity. Frontiers in immunology. 2017;8: 1187. https://doi.org/10.3389/fimmu.2017.01187
  36. Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G. TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J Virol. 2017;91(9):e00088-17. doi: 10.1128/JVI.00088-17.
  37. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010; 12(1):1-12. doi:10.1007/s12017-009-8104-z.
  38. Zheng H, Koo E. Biology and pathophysiology of the amyloid precursor protein. Molecular Neurodegeneration. 2011;6(1):27. https://doi.org/10.1186/1750-1326-6-27