• Title/Summary/Keyword: Bio-signal Measurement

Search Result 160, Processing Time 0.022 seconds

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

Biosignal-based Driver's Emotional Response Monitoring System: Part 1. System Implementation (생체 신호 측정 기반 운전자 상태 모니터링 시스템: 1부 시스템 구현)

  • Kim, Beom-Joon;Lee, Boon-Giin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.677-684
    • /
    • 2018
  • Recently, negative emotional responses by drivers are a growing problem, which leads to not only a traffic accident but a crime so called 'road rage' in countries with heavy traffics including South Korea. Under such a circumstance, measuring stress- and fatigue-induced emotional responses by means of wireless communication and a wearable system would be useful. The purpose of this study is to implement a system that measures various signals from a driver, derives and monitors his emotional responses from the measurements and verify its derivations with reliability. This paper, as a first part of the research, describes how the system has been implemented with experimental methods.

Convenient Assay of O2- Generated on Potato Tuber Tissue Slices Treated with Fungal Elicitor by Electron Spin Resonance - No Secondary Oxidative Burst Induction by H2O2 Treatment

  • Park, Hae-Jun;Doke, Noriyuki
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.283-287
    • /
    • 2005
  • Since the discovery of generation of $O_2^-$ in plant, many evidence for the oxidative burst (OXB) has been accumulated in various combinations of plant and pathogen or elicitor systems. $O_2^-$ generating system responsible for the OXB was coupled with oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in microsomal fraction isolated from sliced aged potato tuber slices which were treated by hyphal wall components elicitor from Phytophthora infestans (HWC). We developed new assay method for quantitative measurement of oxygen radical $O_2^-$ by using electron spin resonance (ESR) analysis during elicitor­induced OXB on the surface of plant tissues. The ESR analysis using an $O_2^-$ trapper, Tiron (1,2-dihydroxy-3,5­benzenedisulfonic acid), provided a convenient assay for detecting only $O_2^-$ during elicitor-induced OXB producing various active oxygen species (AOS) on plant tissue surface. Tiron was oxidized to Tiron semiquinon radical by $O_2^-$. Quantity of the radical signal was measured by specific spectra on ESR spectroscopy. The level of $O_2^-$ was high in from surface of potato tuber tissue treated with hyphal cell wall elicitor (HWC) from Phytophthora infestans. There was no secondary OXB induction by $H_2O_2$ treatment in plant.

Electrode Characteristics of Non-contact Electrocardiographic Measurement

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho;Choi, Won Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.42-45
    • /
    • 2015
  • The ability to take electrocardiographic measurements while performing our daily activities has become the people-choice for modern age vital sign sensing. Currently, wet and dry ECG electrodes are known to pose threats like inflammations, allergic reactions, and metal poisoning due to their direct skin interaction. Therefore, the main goal in this work is to implement a very small ECG sensor system with a capacitive coupling, which is able to detect electrical signals of heart at a distance without the conductive gel. The aim of this paper is to design, implement, and characterize the contactless ECG electrodes. Under a careful consideration of factors that affect a capacitive electrode functional integrity, several different sizes of ECG electrodes were designed and tested with a pilot ECG device. A very small cotton-insulated copper tape electrode ($2.324cm^2$) was finally attained that could detect and measure bioelectric signal at about 500 um of distance from the subject's chest.

Design of Digital Safety-helmet for SpO2 Measurement (산소포화도 측정이 가능한 디지털 안전모 설계)

  • Lee, Min-hye;Jeong, Dong-myong;Shin, Seong-yoon;Jeon, Tae-il;Choi, Jae-seok;Jeong, Gi-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.163-165
    • /
    • 2018
  • Most construction disasters are analyzed to be human factors such as not complying with the safety regulations of construction sites, not using clothing and protective equipment, safety insensitivity, and the health of workers. In order to prevent such a construction disaster, the project site management needs to check the health of workers, but it is difficult to check the condition of workers every hour. Therefore, this paper proposed the design of digital safety-helmet that can automatically identify health conditions by checking workers $SpO_2$ and pulse rates, away from simple protective features.

  • PDF

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

A Study on the Development of Drowsiness Warning System for a Drowsy Driver (졸음 운전자를 위한 졸음 각성 시스템의 개발에 관한 연구)

  • Chong, K.H.;Kim, H.S.;Lee, J.S.;Kim, B.J.;Kim, D.W.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.90-94
    • /
    • 1996
  • We studied the problem of driver's low vigilance state which is related to the one reason of traffic accidents. In this paper, we developed the drowsiness warning system for a drowsy driver. To extract the eyes and mouth from the driver's facial image in real time, a computer vision method was used. The eye blink duration and yawning were used as measurement parameters of drowsiness detection. When the drowsy state of a driver was detected, the driver was refreshed by the scent generator and the alarm. Also, the driver's bio-signal was acquired and analyzed to measure the vigilance state.

  • PDF

Implementation of back propagation algorithm for wearable devices using FPGA (FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현)

  • Choi, Hyun-Sik
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • Neural networks can be implemented in variety of ways, and specialized chips is being developed for hardware improvement. In order to apply such neural networks to wearable devices, the compactness and the low power operation are essential. In this point of view, a suitable implementation method is a digital circuit design using field programmable gate array (FPGA). To implement this system, the learning algorithm which takes up a large part in neural networks must be implemented within FPGA for better performance. In this paper, a back propagation algorithm among various learning algorithms is implemented using FPGA, and this neural network is verified by OR gate operation. In addition, it is confirmed that this neural network can be used to analyze various users' bio signal measurement results by learning algorithm.

Analysis of a Buck DC-DC Converter for Smart Electronic Applications (스마트기기용 강압형 DC-DC 변환기 특성해석)

  • Kang, Bo-gyeong;Na, Jae-Hun;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

A Study on Evaluation of Human Arousal Level using PPG Analysis (PPG(Photoplethysmography)분석을 이용한 각성도 평가에 관한 연구)

  • Kim, Chi-Jung;Whang, Min-Cheol;Kim, Jong-Hwa;Woo, Jin-Cheol;Kim, Yong-Woo;Kim, Ji-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.113-120
    • /
    • 2010
  • This research is to evaluate the arousal level by using cardiovascular response. PPG was used in this study as one of the method of measuring it rather than ECG (Electrocardiography) for the purpose of solving ergonomic problem of sensing. The participants were in the age group of 20 (mean=24, standard deviation=1.25): five men and five women. Each experiment composed with four identical sets. First, a black screen was displayed for 30 second rest. Then, the prepared 6 pair images were randomly presented for 10 second stimulation and for 30 second non-stimulation. PPG was measured on the earlobes of experimenters at 200Hz sampling frequency. PPG amplitude, PPI(Pulse to Pulse Interval), and PRV(Pulse Rate Variability) were analyzed according to arousal level. T-test was performed to compare between the PPG variables of rest and relaxation, rest and arousal, and relaxation and arousal. Relative to the rest state, PPG amplitude decreased in relaxed state and increased in aroused state. Relative to the rest state, PPI decreased in both emotional states. However, more significant decline was observed in aroused state. PRV's LF and HF were used in the form of LF/HF to compare between the relaxed and the aroused state. Therefore, PPG signal showed significant differences between relaxed and aroused state. In conclusion, evaluation of human arousal level used in the PPG analysis demonstrated that PPG has better usability and comforter measurement than ECG and is clearly an alternative method of measuring arousal level.