• 제목/요약/키워드: Bio-sensor System

검색결과 295건 처리시간 0.025초

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

Bio-MEMS분야의 최근 연구동향 (Recent research trends on Bio-MEMS)

  • 박세광;양주란
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

Design and Implementation of Ubiquitous Sensor Network System for Monitoring the Bio-information and Emergency of the Elderly in Silver Town

  • Choi, Seong-Ho;Park, Hyung-Kun;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.219-222
    • /
    • 2010
  • An ubiquitous sensor network (USN) system to monitor the bio information and the emergency of the elderly in the silver town is presented. The USN system consists of the sensor node platforms based on MCU of Atmage128L and RF Chip of CC2420 satisfying IEEE 802.15.4, which includes the bios sensor module such as the electrocardiogram (ECG) sensor and the temperature sensor. Additionally, when an emergency of the elderly is occurred in the silver town, the routing algorithm suitable to find and inform the location of the elderly is proposed, and the proposed routing algorithm is applied to the USN. To collect and manage the ECG data at the PC connected to the sink node, LabView software is used. The bio information and the emergency of the elderly can also be monitored at the client PC by TCP/IP networks in the USN system.

u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템 (u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors)

  • 김홍규;문승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권7호
    • /
    • pp.433-441
    • /
    • 2007
  • 바이오센서는 생명공학 또는 의학 분야에서 사용되는 인간의 생체 신호를 감지할 수 있는 센서들로 의료기기에 주로 사용되는데, 최근 MEMS 기술의 발달로 작은 크기의 하드웨어에 센서 인터페이스, 프로세서, 무선통신, 배터리 등을 포함한 모듈을 센서노드(모트 : Mote)들로 구성된 센서기반 네트워크에서 바이오센서 네트워크로 응용분야를 확장하고 있다. 이에 본 논문에서는 바이오센서 기술과 센서네트워크 기술을 융합한 기술인 바이오 센서네트워크를 활용한 응급 구조 시스템의 설계 및 구현을 제안한다. 제안된 시스템에 사용된 바이오센서는 근전도(EKG), 혈압(Blood Pressure), 맥박(Heart Rate), 산소포화도(Pulse Oximeter), 혈당(Glucose)센서들로, 바이오센서에서 측정된 생체 신호를 센서네트워크 모트를 통해 데이타를 수집하고, 수집된 데이타를 이용하여 건강관리 측정 데이타로 활용하였으며 측정된 데이터는 무선단말기(PDA, 휴대폰), 전자액자 디스플레이장치 등에서 확인 가능하도록 구성하였다. 아울러, 제안한 u- 응급 구조 시스템의 유효성을 실험하기 위해서 사용자의 바이탈사인 정보와 주변 환경정보를 고려한 실험을 수행하였다.

농업 로봇 용 수평 자세 모니터링 시스템 개발 (Development of Horizontal Attitude Monitoring System for Agricultural Robots)

  • 김성득;김청월;권익현;이영태
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.87-91
    • /
    • 2019
  • In this paper, we have development of horizontal attitude monitoring system for agricultural robots. A two-axis gyro sensor and a two-axis accelerometer sensor are used to measure the horizontal attitude angle. The roll angle and pitch angle were measured through the fusion of the gyro sensor signal and the acceleration sensor signal for the horizontal attitude monitoring of the robot. This attitude monitoring system includes GPS and Bluetooth communication module for remote monitoring. The roll angle and pitch angle can be measured by the error of less than 1 degree and the linearity and the reproducibility of the output signal are excellent.

ZigBee 센서 네트워크를 이용한 생체신호 전송 및 저장 시스템의 구현 (Implementation of Bio-Signals Transmission and Storage System Using ZigBee Sensor Network)

  • 김영준;이인성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.131-132
    • /
    • 2007
  • In this paper, we designed and implemented bio-signals transmission and storage system using wireless sensor network based on ZigBee. Wireless sensor network is organized with routing protocol based on tree structure. The data is transmitted to monitoring system based on SIP. ZigBee will be used as various combinations with other wireless network technologies for application purposes.

  • PDF

실리콘 압력센서를 이용한 압력 모니터링 시스템 개발 (Development of Pressure Monitoring System Using Silicon Pressure Sensor)

  • 이영태;권익현
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.76-79
    • /
    • 2018
  • In this paper, we developed a pressure monitoring system using silicon pressure sensor. The pressure monitoring system was developed on the basis of a microcontroller, and a self-developed silicon pressure sensor was applied. The pressure monitoring system outputs the current pressure value via UART communication. In addition, it includes a function of displaying by LED when the preset three-step pressure (low, medium, high pressure) is reached. The silicon pressure sensor used in the pressure monitoring system was set to 0 kPa, 10 kPa, 26 kPa, and the pressure monitoring system was evaluated because the measured maximum pressure was in the range of 100 kPa.

Bio-inspired neuro-symbolic approach to diagnostics of structures

  • Shoureshi, Rahmat A.;Schantz, Tracy;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • 제7권3호
    • /
    • pp.229-240
    • /
    • 2011
  • Recent developments in Smart Structures with very large scale embedded sensors and actuators have introduced new challenges in terms of data processing and sensor fusion. These smart structures are dynamically classified as a large-scale system with thousands of sensors and actuators that form the musculoskeletal of the structure, analogous to human body. In order to develop structural health monitoring and diagnostics with data provided by thousands of sensors, new sensor informatics has to be developed. The focus of our on-going research is to develop techniques and algorithms that would utilize this musculoskeletal system effectively; thus creating the intelligence for such a large-scale autonomous structure. To achieve this level of intelligence, three major research tasks are being conducted: development of a Bio-Inspired data analysis and information extraction from thousands of sensors; development of an analytical technique for Optimal Sensory System using Structural Observability; and creation of a bio-inspired decision-making and control system. This paper is focused on the results of our effort on the first task, namely development of a Neuro-Morphic Engineering approach, using a neuro-symbolic data manipulation, inspired by the understanding of human information processing architecture, for sensor fusion and structural diagnostics.

Development a glucose-FIA system with a fiber optic oxygen sensor

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.730-734
    • /
    • 2005
  • 본 연구에서는 광섬유 산소센서를 기반으로 글루코오스 모니터링용 FIA 시스템을 개발하였다. 운반용액의 낮은 유속에서도 검출가능 하였으며, 산소전극을 이용한 글루코오스-FIA 시스템보다 넓은 범위의 글루코오스 농도를 검출할 수 있었다. 향후, 광섬유 센서를 이용하여 생물반응기에서 기질로 사용되는 글루코오스뿐만 아니라 용존산소, pH, $CO_2$와 같이 다양한 인자들의 모니터링 시스템을 개발하고자 한다.

  • PDF