• 제목/요약/키워드: Bio-nano

검색결과 871건 처리시간 0.026초

ECMP 공정에서 전해질에 따른 Cu 표면 특성 평가 (Surface Characterization of Cu as Electrolyte in ECMP)

  • 권태영;김인권;조병권;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.528-528
    • /
    • 2007
  • Cu CMP widely has been using for the formation of multilevel metal interconnects by the Cu damascene process. And lower dielectric constant materials are required for the below 45nm technology node. As the dielectric constant of dielectric materials are smaller, the strength of dielectric materials become weaker. Therefore these materials are easily damaged by high down pressure during conventional CMP. Also, technical problems such as surface scratches, delamination, dishing and erosion are also occurred. In order to overcome these problems in CMP, the ECMP (electro-chemical mechanical planarization) has been introduced. In this process, abrasive free electrolyte, soft pad and low down force were used. The electrolyte is one of important factor to solve these problems. Also, additives are required to improve the removal rate, uniformity, surface roughness, defects, and so on. In this study, KOH and $NaNO_3$ based electrolytes were used for Cu ECMP and the electrochemical behavior was evaluated by the potentiostat. Also, the Cu surface was observed by SEM as a function of applied voltage and chemical concentration.

  • PDF

Cu ECMP 공정에 사용디는 전해액의 최적화 (Optimization of Electrolytes on Cn ECMP Process)

  • 권태영;김인권;조병권;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.78-78
    • /
    • 2007
  • In semiconductor devices, Cu has been used for the formation of multilevel metal interconnects by the damascene technique. Also lower dielectric constant materials is needed for the below 65 nm technology node. However, the low-k materials has porous structure and they can be easily damaged by high down pressure during conventional CMP. Also, Cu surface are vulnerable to have surface scratches by abrasive particles in CMP slurry. In order to overcome these technical difficulties in CMP, electro-chemical mechanical planarization (ECMP) has been introduced. ECMP uses abrasive free electrolyte, soft pad and low down-force. Especially, electrolyte is an important process factor in ECMP. The purpose of this study was to characterize KOH and $KNO_3$ based electrolytes on electro-chemical mechanical. planarization. Also, the effect of additives such as an organic acid and oxidizer on ECMP behavior was investigated. The removal rate and static etch rate were measured to evaluate the effect of electro chemical reaction.

  • PDF

초임계 유체 및 다공성 소재 제조 기술 (Supercritical Fluids and Preparation of Porous Materials)

  • 이준영;안준현;김중현
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.169-179
    • /
    • 2005
  • 다공성 소재는 바이오 및 전기전자소재 등 다양한 분야에 폭넓게 응용될 수 있다. 이러한 가공소재의 제조 및 공정은 주로 유기용매의 사용에 의해 이루어지고 있으나 유기용매는 대기 방출과 같은 많은 환경성 문제를 야기시키고 있다. 이에 반하여 초임계 유체는 기능성 기공 소재의 제조를 위한 대안 용매로서 수많은 물리적, 화학적 그리고 유독성 측면에서 유용한 장점을 보여주고 있다. 본 총설에서는 초임계 유체를 이용하여 나노/마크로 크기의 미세 기공구조 설계 및 형상 제어를 위한 공정 기술과 초임계 유체 내에서의 화학적 합성 반응을 통한 다공성 소재의 제조 기술을 소개하고자 한다.

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • 방사선산업학회지
    • /
    • 제6권3호
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.

기계적 합성된 분말로부터 펄스전류 활성 소결에 의한 나노구조 3FeAl-Al2O3 복합재료 제조 및 기계적 특성 (Fabrication of Nanostructured 3FeAl-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering and Its Mechanical Properties)

  • 두송이;손인진;도정만;박방주;윤진국
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.449-454
    • /
    • 2012
  • Nanopowder of FeAl and $Al_2O_3$ was synthesized from FeO and Al powders by high energy ball milling. Using the pulsed current activated sintering method, the nanocystalline $Al_2O_3$ reinforced FeAl composite was consolidated within two minutes from mechanically synthesized powders. The advantage of this process is that it allows very quick densification to near theoretical density and prohibits grain growth in nanostuctured materials. The grain size, sintering behavior and hardness of sintered $FeAl-Al_2O_3$ composite were investigated.

6T 분야 특허ㆍ실용신안 출원동향 분석에 관한 연구 (A Study on Trend Analysis of Patents Application in 6T Area)

  • 남인석;김우순;이준수;정병호
    • 산업경영시스템학회지
    • /
    • 제27권4호
    • /
    • pp.49-58
    • /
    • 2004
  • The R&D investment of Korean government has been concentrated into 6T areas-IT(Information Technology), BT(Bio-Technology), NT(Nano Technology), ET(Environment & Energy Technology), ST(Space Technology) and CT(Culture & Contents Technology) - for a couple of years. By this selection and concentration strategy, patent applications are on an increasing trend in these areas. This paper examined the trends of patent application in 6T areas. To do this, this paper classified each technology area into the detail technology area with the valid number of patent applications. According to the result, the analysis data will be used to make R&D budget appropriation of the government.

첨단산업기술(6T) 연구개발사업의 효율성 분석: 2단계 네트워크 DEA 접근의 적용 (Analyzing the Efficiency of National 6T R&D Projects by Two-stage Network DEA Approach)

  • 남현동;남태우
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.248-261
    • /
    • 2021
  • Scientific and technological performances (e.g., patents and publications) made through R&D play a pivotal role for national economic growth. National governments encourage academia-industry cooperation and thereby pursue continuous development of science technology and innovation. Increasing R&D-related investments and manpower are crucial for national industrial development, but evidence of poor performance in business performance, efficiency, and effectiveness has recently been found in Korea. This study evaluates performance efficiency of the 6T sector (Information Technology, Bio Technology, Nano Technology, Space Technology, Environment Technology, Culture Technology), which is considered a high-potential promising industry for the next generation growth and currently occupies two thirds of the national R&D projects. The study measures the relative efficiency of R&D in a comparative perspective by employing the Data Envelopment Analysis (DEA) method. The result reveals overall low efficiency in basic R&D (0.2112), applied R&D (0.2083), development R&D (0.2638), and others (0.0641), confirming that economic performance and efficiency were relatively poor compared to production efficiency. Efficient R&D needs policy makers to create strategies that can increase overall efficiency by improving productivity performance and quality while increasing economic performance.

Investigation on the thermal butt fusion performance of the buried high density polyethylene piping in nuclear power plant

  • Kim, Jong-Sung;Oh, Young-Jin;Choi, Sun-Woong;Jang, Changheui
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1142-1153
    • /
    • 2019
  • This paper presents the effect of fusion procedure on the fusion performance of the thermal butt fusion in the safety class III buried HDPE piping per various tests performed, including high speed tensile impact, free bend, blunt notched tensile, notched creep, and PENT tests. The suitability of fusion joints and qualification procedures was evaluated by comparing test results from the base material and buttfusion joints. From the notched tensile test result, it was found that the fused joints have much lower toughness than the base material. It was also identified that the notched tensile test is more desirable than the high speed tensile impact and free bend tests presented in the ASME Code Case N-755-3 as a fusion qualification test method. In addition, with regard to the single low-pressure fusion joint performances, the procedure given by the ISO 21307 was determined to be better that the one specified in the Code Case N-755-3.

접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성 (Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc)

  • 김주영;조규만;이경석
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

A Simple and Rapid Methicillin-Resistant Staphylococcus aureus (MRSA) Screening Test Using a Mannose-Binding Lectin (MBL)-Conjugated Gold Nanoparticle Probe

  • So Yeon Yi;Jinyoung Jeong;Wang Sik Lee;Jungsun Kwon;Kyungah Yoon;Kyoungsook Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.698-705
    • /
    • 2023
  • Rapid diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for guiding clinical treatment and preventing the spread of MRSA infections. Herein, we present a simple and rapid MRSA screening test based on the aggregation effect of mannose-binding lectin (MBL)-conjugated gold nanoparticles (AuNP), called the MRSA probe. Recombinant MBL protein is a member of the lectin family and part of the innate immune system. It can recognize wall teichoic acid (WTA) on the membrane of MRSA more specifically than that of methicillin-sensitive Staphylococcus aureus (MSSA) under optimized salt conditions. Thus, the MRSA probe can selectively bind to MRSA, and the aggregation of the probes on the surface of the target bacteria can be detected and analyzed by the naked eye within 5 min. To demonstrate the suitability of the method for real-world application, we tested 40 clinical S. aureus isolates (including 20 MRSA specimens) and recorded a sensitivity of 100%. In conclusion, the MRSA probe-based screening test with its excellent sensitivity has the potential for successful application in the microbiology laboratory.