• Title/Summary/Keyword: Bio-nano

Search Result 870, Processing Time 0.037 seconds

Hybrids of Au nanodishes and Au nanoparticles

  • Son, Jin Gyeong;Han, Sang Woo;Lee, Tae Geol;Wi, Jung-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.228.1-228.1
    • /
    • 2015
  • We demonstrate a simple route to hybridize two different nanomaterials by using three-dimensional nanodishes that can be used as small plasmonic containers to host guest nanoparticles. Our nanodishes were fabricated using nanoimprint lithography and oblique-angle film deposition, and the guest nanoparticles were drop-casted onto the host nanodishes. Based on the proposed method, colloidal Au nanoparticles were assembled inside Au nanodishes in the form of a labyrinth. These Au nanoparticle-nanodish hybrids excited a strong surface plasmon resonance, as verified by a numerical simulation of the local field enhancement and by direct observation of the enhanced Raman signals. Our results point to the potential of the nanodishes as a useful platform for combining diverse nanomaterials and their functionalities.

  • PDF

Enantioselective Recognition of Amino Alcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the Hydrogen Bonding Donor Sites

  • Kim, Ji-Young;Nandhakumar, Raju;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1263-1267
    • /
    • 2011
  • Novel binol-based uryl and guanidinium receptors having higher ring conjugation at the periphery of the hydrogen bonding donor sites have been synthesized and utilized to study the enantioselective recognition of 1,2-aminoalcohols and chirality conversion of natural amino acids via imine bond formation. There is a remarkable decrease in the stereoselectivites as the conjugation increases at the periphery of hydrogen bonding donor sites. The guanidinium-based receptors show more selectivity towards the amino alcohol than that of the uryl based ones due to its charge reinforced hydrogen bonds. The conversion efficiency of L-amino acids to Damino acids by the uryl-based receptors is higher than that of the guanidinium-based ones.

Biosensor Implementation Using an Integrated Mach-Zehnder Interferometer (마흐젠더 간섭계를 이용한 바이오센서의 구현)

  • Choo, Sung-Joong;Lee, Byung-Cheol;Kim, Jin-Sik;Park, Jung-Ho;Shin, Hyun-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.497-498
    • /
    • 2008
  • An integrated Mach-Zehnder interferometer for biosensor applications was designed and fabricated. To implement the optimum biosensor a rib waveguide must have single mode operation and high sensitivity. The proposed Mach-Zehnder interferometer was fabricated based on these design rules, and its feasibility is confirmed by ethanol detection experiment in the real-time measurement system operating at 632.8 nm.

  • PDF

Application of Biomimetic Surfaces for MEMS Tribology

  • Singh, R.Arvind;Pham, Duc-Cuong;Yoon, Eui-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1556-1557
    • /
    • 2008
  • "Biomimetics" is the study and simulation of biological systems with desired properties. In recent times, biomimetic surfaces have emerged as novel solutions for tribological applications in micro-electromechanical systems (MEMS). These biomimetic surfaces are attractive for MEMS application as they exhibit low adhesion/friction and wear properties at small-scales. In this paper, we present some of the examples of biomimetic surfaces that have potential application in small-scale devices.

  • PDF

The New Usage of Diffusion Tensor Imaging in Botany (식물학에서의 확산텐서영상 이용)

  • Bayarsaikhan, Itgel;Seo, Min-Seok;Oh, Se-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1227-1229
    • /
    • 2010
  • This paper explains what DTI (Diffusion Tensor Imaging) is and what it does. We will talk about the DTI functions and what type of image it can show, and what areas are using DTI. The tractography and other applications that DTI is being used. In this paper, we explain that DTI is not only useful in medicine but also in botany. We propose to use DTI to study structure and functions of plants.

  • PDF

Conformational Dependent Energy Migration on Cyclic Porphyrin Arrays

  • Song, Suwhan;Han, Minwoo;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.163-166
    • /
    • 2015
  • Intramolecular energy migration in a cyclic porphyrin array is spontaneous transfer of energy from one excited site to another. Since the efficiency of energy migration is inversely proportional to distance, the energy migration is occurred on their adjacent sites more often than distant ones. Therefore, the energy migration in the cyclic porphyrin array is largely dependent on their conformational characters. However, evaluation of conformational information by means of experimental tools is ambiguous since their limited resolution. In this work, we calculate the internal angle and distance distributions of cyclic porphyrin arrays using molecular dynamics simulations to obtain conformational information. To evaluate the angle and distance distributions respect to molecular size, we constructed molecules with n porphyrin dimers (n=1,3,7) in implicit solvent environment. Performing molecular dynamics simulations, we modulated alkyl groups to investigate additional conformational effects of the system.

  • PDF

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.

Electro-optic Characteristics of Polymer Dispersed Liquid Crystal Films

  • Yang, Kee-Jeong;Kim, Chang-Geun;Lee, Seung-Chul;Do, Yun-Seon;Kim, Bae-In;Choi, Byeong-Dae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.902-903
    • /
    • 2009
  • Polymer Dispersed Liquid Crystal (PDLC) films were prepared using the phase separation method with liquid crystal and a newly developed prepolymer. This study investigated the electro-optic characteristics of the PDLC film at various temperatures. It was found that as temperatures increased, the voltage varied, and that the ordinary refractive index of the liquid crystal and the polymer refractive index in the composite had similar dependence at various temperatures.

  • PDF

Optical waveguide sensors using optical birefringence of evanescent fields (소산파의 복굴절을 이용한 광 도파관 센서)

  • Son, K.S.;Lee, H.Y.;Kim, W.K.;Lee, S.S.;Park, S.S.;Kwon, S.W.;Lee, E.C.;Park, J.W.;Ju, H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.309-310
    • /
    • 2008
  • Polymer optical waveguides are fabricated with high-index materials deposited to strengthen exciations of evanescent field whose birefringence is utilized for optical sensing. Optical sensing properties are examined as a function of time, using different types of analyte solutions to extract noise-free signal induced by evanescent field birefringence. It is observed that sensing signal can be free of initial noise that may obscure real signal recognition, when glycerol is used for sensing characterization, due to slow accumulation process following adsorption of analyte material onto the sensing surface of the waveguide.

  • PDF