DOI QR코드

DOI QR Code

Enantioselective Recognition of Amino Alcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the Hydrogen Bonding Donor Sites

  • Kim, Ji-Young (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Nandhakumar, Raju (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Kim, Kwan-Mook (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University)
  • Received : 2011.01.29
  • Accepted : 2011.02.15
  • Published : 2011.04.20

Abstract

Novel binol-based uryl and guanidinium receptors having higher ring conjugation at the periphery of the hydrogen bonding donor sites have been synthesized and utilized to study the enantioselective recognition of 1,2-aminoalcohols and chirality conversion of natural amino acids via imine bond formation. There is a remarkable decrease in the stereoselectivites as the conjugation increases at the periphery of hydrogen bonding donor sites. The guanidinium-based receptors show more selectivity towards the amino alcohol than that of the uryl based ones due to its charge reinforced hydrogen bonds. The conversion efficiency of L-amino acids to Damino acids by the uryl-based receptors is higher than that of the guanidinium-based ones.

Keywords

References

  1. Wang, Q.; Chen, X.; Tao, L.; Wang, L.; Xiao, D.; Yu, X.-Q; Pu, L. J. Org. Chem. 2007, 72, 97. https://doi.org/10.1021/jo061769i
  2. Kim, H.-J.; Kim, W.; Lough, A. J.; Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2005, 127, 16776. https://doi.org/10.1021/ja0557785
  3. Dai, Z.; Xu, X.; Canary, J. W. Chirality 2005, 17, S227. https://doi.org/10.1002/chir.20130
  4. Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002, 124, 4554. https://doi.org/10.1021/ja0256257
  5. Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Tetrahedron 2001, 57, 7153. https://doi.org/10.1016/S0040-4020(01)00671-8
  6. Kim, H.; So, S. M.; Yen, C. P.-H.; Vinhato, E.; Lough, A. J.; Hong, J.-I.; Kim, H.-J.; Chin, J. Angew. Chem. Int. Ed. 2008, 47, 8657. https://doi.org/10.1002/anie.200803116
  7. Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986. https://doi.org/10.1021/ja052029e
  8. Breccia, P.; Van Gool, M.; Pérez-Fernández, R.; Martin-Santamaria, S.; Gago, F.; Prados, P.; Mendoza, J. J. Am. Chem. Soc. 2003, 125, 8270. https://doi.org/10.1021/ja026860s
  9. Oliva, A. I.; Simon, L.; Hernandez, J. V.; Muniz, F. M.; Lithgow, A.; Jimenez, A.; Morán, J. R. J. Chem. Soc., Perkin Trans. 2 2002, 1050.
  10. Osawa, T.; Shirasaka, K.; Matsui, T.; Yoshihara, S.; Akiyama, T.; Hishiya, T.; Asanuma, H.; Komiyama, M. Macromolecules 2006, 39, 2460. https://doi.org/10.1021/ma060064f
  11. Tsubaki, K.; Tanima, D.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K.; Kawabata, T. J. Org. Chem. 2005, 70, 4609. https://doi.org/10.1021/jo050387u
  12. Famulok, M. Science 1996, 272, 1343. https://doi.org/10.1126/science.272.5266.1343
  13. Chin, J.; Lee, S. S.; Lee, K. J.; Park, S.; Kim, D. H. Nature 1999, 401, 254. https://doi.org/10.1038/45751
  14. Sambasivan, S.; Kim, D. S.; Ahn, K. H. Chem. Commun. 2010, 46, 541. https://doi.org/10.1039/b919957h
  15. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids; Wiley: New York, NY, 1987.
  16. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994.
  17. Bergmeier, S. C. Tetrahedron 2000, 56, 2561. https://doi.org/10.1016/S0040-4020(00)00149-6
  18. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835. https://doi.org/10.1021/cr9500038
  19. Kim, K. M.; Park, H.; Kim, H.-J.; Chin, J.; Nam, W. Org. Lett. 2005, 7, 3525. https://doi.org/10.1021/ol051267b
  20. Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518. https://doi.org/10.1021/ja067724g
  21. Park, H.; Nandhakumar, R.; Hong, J.; Ham, S.; Chin, J.; Kim, K. M. Chem. Eur. J. 2008, 14, 9935. https://doi.org/10.1002/chem.200801036
  22. Tang, L.; Choi, S.; Nandhakumar, R.; Park, H.; Chung, H.; Chin, J.; Kim, K. M. J. Org. Chem. 2008, 73, 5996. https://doi.org/10.1021/jo800670t
  23. Nandhakumar, R.; Guo, Y.-N.; Park, H.; Tang, L.; Nam, W.; Kim,K. M. Tetrahedron Lett. 2007, 48, 6582. https://doi.org/10.1016/j.tetlet.2007.07.037
  24. Nandhakumar, R.; Ahn, Y. S.; Hong, S.; Ham, S.; Kim, K. M.Tetrahedron 2009, 65, 666. https://doi.org/10.1016/j.tet.2008.11.022
  25. Tang, L.; Ga, H.; Kim, J.; Choi, S.; Nandhakumar, R.; Kim, K. M.Tetrahedron Lett. 2008, 49, 6914. https://doi.org/10.1016/j.tetlet.2008.09.117
  26. Park, H.; Hong, J.; Ham, S.; Nandhakumar, R.; Kim, K. M. Bull. Kor. Chem. Soc. 2009, 30, 409. https://doi.org/10.5012/bkcs.2009.30.2.409
  27. Nandhakumar, R.; Ryu, J.; Park, H.; Tang, L.; Choi, S.; Kim, K.M. Tetrahedron 2008, 64, 7704. https://doi.org/10.1016/j.tet.2008.06.029
  28. Shaw, J. P.; Petsko, G. A.; Ringe, D. Biochemistry 1997, 36, 1329. https://doi.org/10.1021/bi961856c
  29. Walsh, C. T. J. Biol. Chem. 1989, 264, 23936.
  30. Charalambides, Y. C.; Moratti, S. C. Syn. Commun. 2007, 37, 1037. https://doi.org/10.1080/00397910601055156

Cited by

  1. Discrimination of α-Amino Acids Using Green Tea Flavonoid (−)-Epigallocatechin Gallate as a Chiral Solvating Agent vol.78, pp.6, 2013, https://doi.org/10.1021/jo3025016
  2. A Novel Dimeric BINOL for Enantioselective Recognition of 1,2-Amino Alcohols vol.32, pp.11, 2014, https://doi.org/10.1002/cjoc.201400321