• Title/Summary/Keyword: Bio-logger

Search Result 11, Processing Time 0.022 seconds

Effect of Bio-logger Attachment Location on Blood Characteristics and Bio-logger Attachment Efficiency in Spotted Sea Bass Lateolabrax maculatus (바이오로거 부착 위치가 점농어(Lateolabrax maculatus)의 혈액 성상 및 바이오로거 부착효율에 미치는 영향)

  • Sung-Yong Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.5
    • /
    • pp.651-659
    • /
    • 2023
  • The effect of bio-logger tagging location on blood characteristics and bio-logger attachment efficiency in spotted sea bass (mean body weight 2356.7 g) was investigated. The fish were tagged at four different tagging locations: no-tag (control), operculum attachment (OA), dorsal muscle attachment (DA), and cauda peduncle muscle attachment (CA). The blood properties and bio-logger attachment efficiencies were examined on days 1, 7, 14, and 35 after tagging the bio-logger at each tagging location. During the experimental periods, the concentrations of hematocrit and hemoglobin in whole blood, and GOT (glutamic oxaloacetic transaminase), GPT (glutamic pyruvic transaminase), total protein (TP), glucose, total cholesterol, cortisol, and superoxide dismutase in plasma were not affected by the attachment location of the bio-logger, however, the TP concentration was significantly lower in OA than in the control group on day 7. After tagging for 35 days, the efficiencies of bio-logger attachment in the OA, DA, and CA after tagging for 35 days were 33.3%, 100.0%, and 33.3%, respectively. These results indicate that, in our experimental condition, the most appropriate bio-logger attachment location is DA, providing basic information on bio-logger utilization methods for ecological and biological biotelemetry surveys of the spotted sea bass.

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF

A review on fish bio-logging for biotelemetry applications

  • Jikang Park;Sung-Yong Oh
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.698-707
    • /
    • 2023
  • Fish are an essential resource in human society, and while ecological research on them is challenging, it is absolutely necessary. Recent technologies enabled researchers to monitor underwater fish behavior. Acoustic signals, satellite-mediated location estimation, and light-based geolocation are powerful tools for tracking fish movements from freshwater to deep-sea habitats. These tools allow us to track various fish species and elucidate their ecology. Furthermore, based on these technologies, we can develop fisheries management plans and enhance aquaculture productivity. In this review, we also discuss challenges in improving current technologies and provide future recommendations for fish bio-logging studies.

Detection of Fever with Subcutaneously Implanted Thermo-Loggers in Cattle Administered with Lipopolysaccharide

  • Ro, Younghye;Bok, Jin-Duck;Lee, Hun-Jun;Kang, Sang-Kee;Kim, Danil;Lee, Yoonseok
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.97-99
    • /
    • 2018
  • The aim of this study is to determine whether subcutaneous temperature (ST) was correlated with rectal temperature (RT) in cattle with inducing artificial fever. In order to determine the correlation between their temperatures, the experiment was performed as follow: Among nine Holstein steers, lipopolysaccharide (LPS) was intravenously administered at a dose of $0.5{\mu}g/kg$ of body weight to six Holstein steer, then, 6 ml of saline was administrated to three steers as a control group. After LPS injection, ST was recorded using subcutaneously implanted thermo-logger sensors at 10-min intervals, and RT was measured using a digital thermometer at 0, 1, 2, 3, 4, 8 and 12 h. In steers with LPS injection, RT was highest at 3 to 4 h and recovered to a pre-challenge temperature at 8-22 h. A similar fluctuation was shown in ST except for an unexpected decrease at 1 h, and a positive correlation between RT and ST was observed in LPS-challenged steers (r = 0.497, P = 0.04). This result suggests that ST could be utilized as an index for early detection of infectious diseases or physiological events.

Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers

  • Lee, Y.;Bok, J.D.;Lee, H.J.;Lee, H.G.;Kim, D.;Lee, I.;Kang, S.K.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean${\pm}$standard deviation [SD], $37.1^{\circ}C$ to $37.36^{\circ}C{\pm}0.91^{\circ}C$ to $1.02^{\circ}C$). STs are $1.39^{\circ}C$ to $1.65^{\circ}C$ lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below $36.5^{\circ}C$ or $37^{\circ}C$, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below $36.5^{\circ}C$ or $37^{\circ}C$ resulting in a much improved mean${\pm}$SD of $37.6^{\circ}C{\pm}0.64^{\circ}C$ or $37.8^{\circ}C{\pm}0.55^{\circ}C$, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

Experimental Study on Bio-signal Characteristics of Stuckyi during Heating (스투키의 가열에 의한 생체 신호 변화 특성에 대한 실험 연구)

  • Nam, Dahyun;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2016
  • An experiment was performed to show the bio-signal characteristics of the Stuckyi when was heated. To measure the bio-signal of the plant, this study used the electrode with copper(+) and constantan(-). The electrode was directly inserted into the Stuckyi stems. And used T-type thermocouple to measure the inside temperature of the Stuckyi. During the experiments, room temperature also measured with T-type thermocouple. Heating was made with hair dryer periodically that 3 times turned on for heating 5 min and off for non-heating 25 min. Under the situation, the responses of the Stuckyi including voltage potential and inside temperature were measured using data logger(HP-34970A) according to the distances(15cm, 30cm, 45cm) between hair dryer and the plant. Through the experiments, We knew that the inside temperature has similar level and behavior with the room temperature at normal state. And during heating period, the inside temperature and the potential were also simultaneously increased sharply. From the experiments, we revealed that the measuring system of bio-signal of the plant being proposed in this study can be useful to show the Characteristics of the plants.

Characteristics of Temperature Distribution of Pen for Exhaust Fan of Ventilation System (돈사용 환기팬을 위한 돈사 내 온도 분포 특성)

  • Kim, Hyeon-Tae;Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.155-160
    • /
    • 2014
  • This study was researched for use by data for the improvement of ventilation system of optimum environmental control systems. The ventilation system for windowless swine housing was installed negative pressure system that circular pipe duct for inlet was installed on the ceiling and axial flow fan for exhaust was installed on the sidewall. The temperatures in the pen was measured using infrared thermography camera and thermocouple with data-logger. The temperature measurement points was selected by infrared thermography camera is alley (G), inlet (A), front-upper (B), front-lower (C), rear-upper (D), rear-lower (E), forward fan (F). The temperature measured at those selected points for temperature distribution was $28^{\circ}C$ that was maintained setting temperature in suitably. The temperature deviations of F point and A~E points in windowless swine housing was less then average $0.5^{\circ}C$. The result of air velocity of measured points was suitable to the breeding of pigs.

Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring (IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.

External Attachment of Pop-up Satellite Archival Tag (PSAT) and Water Temperature Affect Oxygen Consumption Rate of the Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 산소 소비율에 미치는 Pop-up Satellite Archival Tag (PSAT) 체외 부착과 수온의 영향)

  • Geun Su Lee;Pil Jun Kang;Hye Mi Park;Sung-Yong Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.5
    • /
    • pp.660-666
    • /
    • 2023
  • This study aimed to examine the effect of external pop-up satellite archival tags (PSATs) attachment and water temperature on the oxygen consumption rate (OCR) of the olive flounder (mean body weight 2281.7 g). The OCRs of fish were measured under conditions of three different water temperature conditions (15, 20, and 25℃) and two different tagging methods [non-tagging, control; bio-logger external attachment with a miniature PSAT (dummy mrPAT), BEA] using a closed flow-through respirometer. The OCRs of fish linearly increased with the increase in water temperature in both the control and BEA (P<0.001); however, the OCRs of BEA were approximately 1.8-1.9 times lower than those of the control at each water temperature (P<0.001). The Q10 values of the control and BEA were the highest in the water temperature range of 15 to 20℃, but sensitivity to water temperature changes was higher in BEA than in the control. The metabolic energy loss rate (MEL) of fish increased with increasing water temperature regardless of external tagging, but the MEL of the control was higher than that of BEA (P<0.001). These results demonstrate that OCR, thermal sensitivity, and energy expenditure are all affected in adult olive flounder with external PSAT attachment.

Heat Insulation Characteristics of Multi Layer Materials for Greenhouse (시설원예용 조합형 다겹보온자재의 보온 특성)

  • Chung, Sung-Won;Kim, Dong-Keon;Lee, Suk-Gun;Nam, Sang-Heon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Experiments and computations were conducted to investigate the heat insulation characteristics of multi layer materials for cultivation greenhouse. In case of the experiments, measurements of temperature were carried out with a K-type thermocouples and data logger to research the heat transfer in the experimental module generated by the heat source. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of multi layer materials. The numerical analyses were performed by commercial code CFX-11 according to the variation of multi layer materials without air layer. The experimental results showed that the heat insulation of multi layer materials was higher than single layer materials by 50~90%. It was found that the effect of heat insulation was raised by the combination of multi layer materials.