DOI QR코드

DOI QR Code

A review on fish bio-logging for biotelemetry applications

  • Jikang Park (Division of Glacial Environment Research, Korea Polar Research Institute) ;
  • Sung-Yong Oh (Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology)
  • Received : 2023.10.23
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

Fish are an essential resource in human society, and while ecological research on them is challenging, it is absolutely necessary. Recent technologies enabled researchers to monitor underwater fish behavior. Acoustic signals, satellite-mediated location estimation, and light-based geolocation are powerful tools for tracking fish movements from freshwater to deep-sea habitats. These tools allow us to track various fish species and elucidate their ecology. Furthermore, based on these technologies, we can develop fisheries management plans and enhance aquaculture productivity. In this review, we also discuss challenges in improving current technologies and provide future recommendations for fish bio-logging studies.

Keywords

Acknowledgement

This study was conducted under the research project "Environmental Impact Analysis on the Offshore Wind Farm and Database System Development," which was driven by the Korea Environment Institute (KEI) and funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and of the Ministry of Trade, Industry & Energy(MOTIE) of the Korea (Project No. 20203030020080, PN91870).

References

  1. Abecasis D, Steckenreuter A, Reubens J, Aarestrup K, Alos J, Badalamenti F, et al. A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim Biotelemetry. 2018;6:12.
  2. Alfonso S, Sadoul B, Cousin X, Begout ML. Spatial distribution and activity patterns as welfare indicators in response to water quality changes in European sea bass, Dicentrarchus labrax. Appl Anim Behav Sci. 2020;226:104974.
  3. Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016;3:155.
  4. Andrzejaczek S, Vely M, Jouannet D, Rowat D, Fossette S. Regional movements of satellite-tagged whale sharks Rhincodon typus in the Gulf of Aden. Ecol Evol. 2021;11:4920-34. https://doi.org/10.1002/ece3.7400
  5. Beguer-Pon M, Castonguay M, Benchetrit J, Hatin D, Verreault G, Mailhot Y, et al. Large-scale migration patterns of silver American eels from the St. Lawrence river to the Gulf of St. Lawrence using acoustic telemetry. Can J Fish Aquat Sci. 2014;71:1579-92. https://doi.org/10.1139/cjfas-2013-0217
  6. Bergstedt RA, Argyle RL, Taylor WW, Krueger CC. Seasonal and diel bathythermal distributions of Lake Whitefish in Lake Huron: potential implications for lake Trout Bycatch in commercial fisheries. N Am J Fish Manag. 2016;36:705-19. https://doi.org/10.1080/02755947.2016.1165771
  7. Bestley S, Patterson TA, Hindell MA, Gunn JS. Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming. J Anim Ecol. 2008;77:1223-33. https://doi.org/10.1111/j.1365-2656.2008.01437.x
  8. Block BA, Dewar H, Farwell C, Prince ED. A new satellite technology for tracking the movements of Atlantic bluefin tuna. Proc Natl Acad Sci USA. 1998;95:9384-9. https://doi.org/10.1073/pnas.95.16.9384
  9. Braun CD, Fischer G, Thomas Rossby H, Furey H, Bower A, Thorrold SR. The RAFOS ocean acoustic monitoring (ROAM) tag: a highly accurate fish tag for at-sea movement studies. N Pac Anadr Fish Comm Tech Rep. 2019;15:168-70. https://doi.org/10.23849/npafctr15/168.170.
  10. Broom DM. Cognitive ability and sentience: which aquatic animals should be protected? Dis Aquat Organ. 2007;75:99-108. https://doi.org/10.3354/dao075099
  11. Brownscombe JW, Ledee EJI, Raby GD, Struthers DP, Gutowsky LFG, Nguyen VM, et al. Conducting and interpreting fish telemetry studies: considerations for researchers and resource managers. Rev Fish Biol Fish. 2019;29:369-400. https://doi.org/10.1007/s11160-019-09560-4
  12. Choi JH, Yun SH, Hong MJ, Kang KH, Lee WS. Research trends in seabird and marine fish migration: focusing on tracking methods and previous studies. Korean J Environ Biol. 2022;40:25-53. https://doi.org/10.11626/KJEB.2022.40.1.025
  13. Coffey DM, Holland KN. First autonomous recording of in situ dissolved oxygen from free-ranging fish. Anim Biotelemetry. 2015;3:47.
  14. Coffey DM, Royer MA, Meyer CG, Holland KN. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLOS ONE. 2020;15:e0228253.
  15. Cooke SJ, Crossin GT, Patterson DA, English KK, Hinch SG, Young JL, et al. Coupling non-invasive physiological assessments with telemetry to understand inter-individual variation in behaviour and survivorship of sockeye salmon: development and validation of a technique. J Fish Biol. 2005;67:1342-58. https://doi.org/10.1111/j.1095-8649.2005.00830.x
  16. Cooke SJ, Iverson SJ, Stokesbury MJW, Hinch SG, Fisk AT, VanderZwaag DL, et al. Ocean tracking network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries. 2012;36:583-92. https://doi.org/10.1080/03632415.2011.633464
  17. Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, et al. Tracking animals in freshwater with electronic tags: past, present and future. Anim Biotelemetry. 2013;1:5.
  18. Cote D, Scruton DA, Niezgoda GH, McKinley RS. A coded acoustic telemetry system for high precision monitoring of fish location and movement: application to the study of nearshore nursery habitat of juvenile Atlantic cod (Gadus morhua). Mar Technol Soc Mar Technol Soc J. 1998;32:54.
  19. Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, et al. Acoustic telemetry and fisheries management. Ecol Appl. 2017;27:1031-49. https://doi.org/10.1002/eap.1533
  20. DeCelles GR, Cadrin SX. Movement patterns of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of Maine: observations with the use of passive acoustic telemetry. Fish Bull. 2010;108:408-419.
  21. Deng ZD, Martinez JJ, Li H, Harnish RA, Woodley CM, Hughes JA, et al. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters. Sci Rep. 2017;7:42999.
  22. Eiler JH, Grothues TM, Dobarro JA, Shome R. Tracking the movements of juvenile Chinook salmon using an autonomous underwater vehicle under payload control. Appl Sci. 2019;9:2516.
  23. Fisk AT, Lydersen C, Kovacs KM. Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar Ecol Prog Ser. 2012;468:255-65. https://doi.org/10.3354/meps09962
  24. Fore M, Alfredsen JA, Gronningsater A. Development of two telemetry-based systems for monitoring the feeding behaviour of Atlantic salmon (Salmo salar L.) in aquaculture sea-cages. Comput Electron Agric. 2011;76:240-51. https://doi.org/10.1016/j.compag.2011.02.003
  25. Fore M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, et al. Precision fish farming: a new framework to improve production in aquaculture. Biosyst Eng. 2018;173:176-93. https://doi.org/10.1016/j.biosystemseng.2017.10.014
  26. Furey NB, Vincent SP, Hinch SG, Welch DW. Variability in migration routes influences early marine survival of juvenile salmon smolts. PLOS ONE. 2015;10:e0139269.
  27. Hammerschlag N, Gallagher AJ, Lazarre DM. A review of shark satellite tagging studies. J Exp Mar Biol Ecol. 2011;398:1-8. https://doi.org/10.1016/j.jembe.2010.12.012
  28. Hazen EL, Maxwell SM, Bailey H, Bograd SJ, Hamann M, Gaspar P, et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser. 2012;457:221-40. https://doi.org/10.3354/meps09857
  29. Heithaus M, Dill L, Marshall G, Buhleier B. Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar Biol. 2002;140:237-48. https://doi.org/10.1007/s00227-001-0711-7
  30. Heo G, Hwang DJ, Min EB, Oh SY, Park JW, Shin HO. Analysis of the behavior of gray rockfish (Sebastes schlegelii Hilgendorf) on the construction of wind power generators in the sea area around Byeonsan Peninsula, Korea. J Korean Soc Fish Ocean Technol. 2019;55:129-37. https://doi.org/10.3796/KSFOT.2019.55.2.129
  31. Hight BV, Lowe CG. Elevated body temperatures of adult female leopard sharks, Triakis semifasciata, while aggregating in shallow nearshore embayments: evidence for behavioral thermoregulation? J Exp Mar Bio Ecol. 2007;352:114-28. https://doi.org/10.1016/j.jembe.2007.07.021
  32. How JR, de Lestang S. Acoustic tracking: issues affecting design, analysis and interpretation of data from movement studies. Mar Freshw Res. 2012;63:312-24. https://doi.org/10.1071/MF11194
  33. Howey LA, Tolentino ER, Papastamatiou YP, Brooks EJ, Abercrombie DL, Watanabe YY, et al. Into the deep: the functionality of mesopelagic excursions by an oceanic apex predator. Ecol Evol. 2016;6:5290-304. https://doi.org/10.1002/ece3.2260
  34. Hulbert IAR, French J. The accuracy of GPS for wildlife telemetry and habitat mapping. J Appl Ecol. 2001;38:869-78. https://doi.org/10.1046/j.1365-2664.2001.00624.x
  35. Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348:1255642.
  36. Hussey NE, Orr J, Fisk AT, Hedges KJ, Ferguson SH, Barkley AN. Mark report satellite tags (mrPATs) to detail largescale horizontal movements of deep water species: first results for the Greenland shark (Somniosus microcephalus). Deep Res I Oceanogr Res Pap. 2018;134:32-40. https://doi.org/10.1016/j.dsr.2018.03.002
  37. Im YJ, Jo HS. Migration and growth rate of mottled skate, Beringraja pulchra by the tagging release program in the Yellow Sea, Korea. J Korean Soc Fish Ocean Technol. 2015;51:227-34. https://doi.org/10.3796/KSFT.2015.51.2.227
  38. Jasonowicz A, Sitar S, Seider M, Goetz F. Depth and temperature selection of lake charr (Salvelinus namaycush) ecotypes in Lake Superior revealed by popup satellite archival tags. J Great Lakes Res. 2022;48:1050-66. https://doi.org/10.1016/j.jglr.2022.05.003
  39. Kang KM, Shin HO, Kang DH, Kim MS. Comparison of behavior characteristics between wild and cultured black seabream Acanthopagrus schlegeli using acoustic telemetry. J Korean Soc Fish Ocean Technol. 2008;44:141-7. https://doi.org/10.3796/KSFT.2008.44.2.141
  40. Kim C, Yang J, Kang S, Lee S-J, Kang S. Tracking of yellowtail Seriola quinqueradiata migration using pop-up satellite archival tag (PSAT) and oceanic environments data. Korean J Fish Aquat Sci. 2021;54:787-97.
  41. Klinard NV, Matley JK. Living until proven dead: addressing mortality in acoustic telemetry research. Rev Fish Biol Fish. 2020;30:485-99. https://doi.org/10.1007/s11160-020-09613-z
  42. Kolarevic J, Aas-Hansen O, Espmark A, Baeverfjord G, Fyhn Terjesen B, Damsgard B. The use of acoustic acceleration transmitter tags for monitoring of Atlantic salmon swimming activity in recirculating aquaculture systems (RAS). Aquac Eng. 2016;72-73:30-9. https://doi.org/10.1016/j.aquaeng.2016.03.002
  43. Kooyman GL. Maximum diving capacities of the Weddell seal, Leptonychotes weddelli. Science. 1966;151:1553-4. https://doi.org/10.1126/science.151.3717.1553
  44. Lander ME, Lindstrom T, Rutishauser M, Franzheim A, Holland M. Development and field testing a satellite-linked fluorometer for marine vertebrates. Anim Biotelemetry. 2015;3:40.
  45. Lee JH, Kim JN, Lee JB, Choi JH, Moon SY, Park J. Kim DN. Movement of Pacific cod Gadus macrocephalus in the Korean Southeast Sea, ascertained through pop-up archival tags and conventional tags. J Korean Soc Fish Ocean Technol. 2015;51:624-9. https://doi.org/10.3796/KSFT.2015.51.4.624
  46. Logan RK, Vaudo JJ, Lowe CG, Wetherbee BM, Shivji MS. High-resolution post-release behaviour and recovery periods of two highly prized recreational sportfish: the blue marlin and sailfish. ICES J Mar Sci. 2022;79:2055-68. https://doi.org/10.1093/icesjms/fsac137
  47. Lowerre-barbieri SK, Kays R, Thorson JT, Wikelski M. The ocean's movescape: fisheries management in the bio-logging decade (2018-2028). ICES J Mar Sci. 2019;76:477-88. https://doi.org/10.1093/icesjms/fsy211
  48. Martins CIM, Galhardo L, Noble C, Damsgard B, Spedicato MT, Zupa W, et al. Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem. 2012;38:17-41. https://doi.org/10.1007/s10695-011-9518-8
  49. Matley JK, Klinard NV, Barbosa Martins AP, Aarestrup K, Aspillaga E, Cooke SJ, et al. Global trends in aquatic animal tracking with acoustic telemetry. Trends Ecol Evol. 2022;37:79-94. https://doi.org/10.1016/j.tree.2021.09.001
  50. Mei Y, Sun B, Li D, Yu H, Qin H, Liu H, et al. Recent advances of target tracking applications in aquaculture with emphasis on fish. Comput Electron Agric. 2022;201:107335.
  51. Mooney TA, Andersson MH, Stanley J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography. 2020;33:82-95. https://doi.org/10.5670/oceanog.2020.408
  52. Nassar JM, Khan SM, Velling SJ, Diaz-Gaxiola A, Shaikh SF, Geraldi NR, et al. Compliant lightweight non-invasive standalone "Marine Skin" tagging system. npj Flex Electron. 2018;2:13.
  53. Papastamatiou YP, Watanabe YY, Bradley D, Dee LE, Weng K, Lowe CG, et al. Drivers of daily routines in an ectothermic marine predator: hunt warm, rest warmer? PLOS ONE. 2015;10:e0127807.
  54. Patterson K, Blanchfield PJ. Oncorhynchus mykiss escaped from commercial freshwater aquaculture pens in Lake Huron, Canada. Aquac Environ Interact. 2013;4:53-65. https://doi.org/10.3354/aei00073
  55. Pegg MA, Bettoli PW, Layzer JB. Movement of saugers in the lower Tennessee river determined by radio telemetry, and implications for management. N Am J Fish Manag. 1997;17:763-8. https://doi.org/10.1577/1548-8675(1997)017<0763:MOSITL>2.3.CO;2
  56. Pincock DG, Johnston SV. Acoustic telemetry overview. Telem Tech Fish Res. 2012:305-37.
  57. Prentice EF, Park DL. Study to determine the biological feasibility of a new fish tagging system. Annu Rep Res. 1983;1984:19-83.
  58. Priede IG. A basking shark (Cetorhinus maximus) tracked by satellite together with simultaneous remote sensing. Fish Res. 1984;2:201-16. https://doi.org/10.1016/0165-7836(84)90003-1
  59. Reubens J, Aarestrup K, Meyer C, Moore A, Okland F, Afonso P. Compatibility in acoustic telemetry. Anim Biotelemetry. 2021;9:33.
  60. Riding TAC, Dennis TE, Stewart CL, Walker MM, Montgomery JC. Tracking fish using 'buoy-based' GPS telemetry. Mar Ecol Prog Ser. 2009;377:255-62. https://doi.org/10.3354/meps07809
  61. Rillahan C, Chambers MD, Huntting Howell W, Watson III WH. The behavior of cod (Gadus morhua) in an offshore aquaculture net pen. Aquaculture. 2011;310:361-8. https://doi.org/10.1016/j.aquaculture.2010.10.038
  62. Rossby T, Fischer G, Omand MM. A new technology for continuous long-range tracking of fish and lobster. Oceanography. 2017;30:36-7. https://doi.org/10.5670/oceanog.2017.217
  63. Secor DH. Migration ecology of marine fishes. Baltimore: Johns Hopkins University Press; 2015.
  64. Semmens JM, Kock AA, Watanabe YY, Shepard CM, Berkenpas E, Stehfest KM, et al. Preparing to launch: biologging reveals the dynamics of white shark breaching behaviour. Mar Biol. 2019;166:95.
  65. Shin HO, JW Tae. Acoustic telemetrical tracking of the response behavior of red seabream (Chrysophrys major) to artificial reefs. Korean J Fish Aquat Sci. 2004;37(5):433-9.
  66. Shin HO, JW Tae. Acoustic telemetrical measurement of the movement range and diurnal behavior of rockfish (Sebastes schlegeli) at the artificial reef. Korean J Fish Aquat Sci. 2005;38(2):129-36.
  67. Sims DW, Queiroz N, Humphries NE, Lima FP, Hays GC. Longterm GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLOS ONE. 2009;4:e7351.
  68. Sleeman JC, Meekan MG, Wilson SG, Polovina JJ, Stevens JD, Boggs GS, et al. To go or not to go with the flow: environmental influences on whale shark movement patterns. J Exp Mar Biol Ecol. 2010;390:84-98. https://doi.org/10.1016/j.jembe.2010.05.009
  69. Sneddon LU, Wolfenden DCC, Thomson JS. Stress management and welfare. In: Schreck CB, Tort L, Farrell AP, Brauner CJ, editors. Fish physiology. London: Elsevier; 2016. p.463-539.
  70. Southall EJ, Sims DW, Witt MJ, Metcalfe JD. Seasonal space-use estimates of basking sharks in relation to protection and political-economic zones in the North-East Atlantic. Biol Conserv. 2006;132:33-9. https://doi.org/10.1016/j.biocon.2006.03.011
  71. Stickler M, Enders EC, Pennell CJ, Cote D, Alfredsen K, Scruton DA. Stream gradient-related movement and growth of Atlantic salmon parr during winter. Trans Am Fish Soc. 2011;137:371-85. https://doi.org/10.1577/T06-265.1
  72. Thorstad EB, Rikardsen AH, Alp A, Okland F. The use of electronic tags in fish research - an overview of fish telemetry methods. Turk J Fish Aquat Sci. 2013;13:881-96.
  73. Tone K, Chiang WC, Yeh HM, Hsiao ST, Li CH, Komeyama K, et al. Two-way habitat use between reefs and open ocean in adult greater amberjack: evidence from biologging data. Mar Ecol Prog Ser. 2022;699:135-51. https://doi.org/10.3354/meps14169
  74. Trefethen PS. Sonic equipment for tracking individual fish. Washington, DC: US Department of the Interior, Fish and Wildlife Service; 1956.
  75. Weber C, Scheuber H, Nilsson C, Alfredsen KT. Detection and apparent survival of PIT-tagged stream fish in winter. Ecol Evol. 2016;6:2536-47. https://doi.org/10.1002/ece3.2061
  76. Whitney NM, Pratt Jr. HL, Pratt TC, Carrier JC. Identifying shark mating behaviour using three-dimensional acceleration loggers. Endanger Species Res. 2010;10:71-82. https://doi.org/10.3354/esr00247
  77. Young JM, Bowers ME, Reyier EA, Morley D, Ault ER, Pye JD, et al. The FACT network: philosophy, evolution, and management of a collaborative coastal tracking network. Mar Coast Fish. 2020;12:258-71. https://doi.org/10.1002/mcf2.10100