• 제목/요약/키워드: Bio-inspired Engineering

검색결과 129건 처리시간 0.027초

Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering

  • Sinha, Arvind;Martin, Elizabeth M.;Lim, Ki-Taek;Carrier, Danielle Julie;Han, Haewook;Zharov, Vladimir P.;Kim, Jin-Woo
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.373-393
    • /
    • 2015
  • Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs' unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.

Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis

  • Zhou, Xiang;You, Zhong;Byrne, James M.D.
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.1-15
    • /
    • 2011
  • Cerebral aneurysm is common lesion among adult population. Current methods for treating the disease have several limitations. Inspired by fern leaves, we have developed a new stent, called leaf stent, which can provide a tailored coverage at the neck of an aneurysm and thus prevent the blood from entering the aneurysm. It alone can be used to treat the cerebral aneurysm and therefore overcomes problems existing in current treating methods. The paper focuses on the numerical simulation of the leaf stents. The mechanical behaviour of the stent in various designs has been investigated using the finite element method. It has been found that certain designs provide adequate radial force and have excellent longitudinal flexibility. The performance of certain leaf stents is comparable and even superior to those of the commercially available cerebral stents such as the Neuroform stent and the Enterprise stent, commonly used for stent assisted coiling, while at the same time, providing sufficient coverage to isolate the aneurysm without using coils.

Firing Offset Adjustment of Bio-Inspired DESYNC-TDMA to Improve Slot Utilization Performances in Wireless Sensor Networks

  • Kim, Kwangsoo;Shin, Seung-hun;Roh, Byeong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1492-1509
    • /
    • 2017
  • The wireless sensor network (WSN) is a key technology to support the Internet of things (IoT) paradigm. The efficiency of the MAC protocol in WSN is very important to take scalability with restricted wireless resources. The DESYNC-TDMA has an advantage of simple distributed slot allocation inspired by nature, but there is a critical disadvantage of split slots by firing message. The basic split slot model has less efficiency for continuous packet transmitting because of wasting of the slots less than the packet size. In this paper, we propose a firing offset adjustment scheme to improve the efficiency of slot utilizations, which can manage the slot assigned to each node as a single large block, called the single slot model. The performance analysis models for both the existing and the proposed schemes are also derived. Experimental results show that the proposed method provide better efficiency of slot utilization than the existing schemes without any loss of the nature of the desynchronization.

Targeted Nanomedicine that Interacts with Host Biology

  • 주진명
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.81-81
    • /
    • 2017
  • Nanotechnology is of great importance to molecular biology and medicine because life processes are maintained by the action of a series of molecular nanomachines in the cell machinery. Recent advances in nanoscale materials that possess emergent physical properties and molecular organization hold great promise to impact human health in the diagnostic and therapeutic arenas. In order to be effective, nanomaterials need to navigate the host biology and traffic to relevant biological structures, such as diseased or pathogenic cells. Moreover, nanoparticles intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Inspired by nature, we use peptides to transfer biological trafficking properties to synthetic nanoparticles to achieve targeted delivery of payloads. In this talk, development of nanoscale materials will be presented with a particular focus on applications to three outstanding health problems: bacterial infection, cancer detection, and traumatic brain injury. A biodegradable nanoparticle carrying a peptide toxin trafficked to the bacterial surface has antimicrobial activity in a pneumonia model. Trafficking of a tumor-homing nanoprobes sensitively detects cancer via a high-contrast time-gated imaging system. A neuron-targeted nanoparticle carrying siRNA traffics to neuronal populations and silences genes in a model of traumatic brain injury. Unique combinations of material properties that can be achieved with nanomaterials provide new opportunities in translational nanomedicine. This framework for constructing nanomaterials that leverage bio-inspired molecules to traffic diagnostic and therapeutic payloads can contribute on better understanding of living systems to solve problems in human health.

  • PDF

분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법 (A Task Offloading Approach using Classification and Particle Swarm Optimization)

  • 존크리스토퍼 마테오;이재완
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2017
  • 클라우드 컴퓨팅에서 바이오 영감 컴퓨팅 기술과 같은 연구들을 통해, 오프로딩 기법에서 새로운 차원의 솔루션이 개발되고 있다. 모바일 장비 사용의 증가 추세에 따라, 바이오 영감 기술은 모바일 클라우드 컴퓨팅의 발전에 기여하고 있다. 모바일 클라우드 컴퓨팅에서의 에너지효율적인 기법은 총 에너지 소비를 줄이기 위해 필요하지만, 지금까지의 연구는 태스크 분산을 위한 의사결정과정에서 에너지 소비에 관해 고려하지 않고 있다. 본 논문에서는 클라우드렛에서 데이터센터로의 오프로딩 전략으로 Particle Swarm Optimization (PSO) 방법을 제안하며, 이 과정에서 각 태스크는 입자(particle)로 표현된다. 입자의 수를 줄이기 위해 PSO를 적용하기 전에 K-means 클러스터링을 사용하여 수집한 태스크를 클라우드렛 상에서 분류하며, PSO 처리과정 중에는 모든 태스크를 대상으로 하지 않고 분류된 태스크에 따라 최적의 데이터 센터를 찾는다. 시뮬레이션 결과, 제안한 PSO기법이 처리 시간 관점에서는 전통적인 방법에 비해 조금 늦지만, 에너지 관점의 데이터 센터 선택에서는 우수함을 나타내었다.

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

FPGA 2 차원 배열을 사용한 디지털 회로에서 오류 검출의 방법 (The methods of error detection at Digital circuit using the FPGA 2-dimensional array)

  • 김석환;허창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.202-206
    • /
    • 2012
  • 본 논문에서는 세포가 지니는 자가 복구 기능을 모사한 디지털 시스템 설계에서의 설계 방향에 대해 연구한다. 세포의 본래 구조인 3차원 배열이 아닌 FPGA를 이용하여 Cell들을 2차원 구조로 설계하고 효율적인 오류검출을 위한 블록배열 방법에 대해 알아보았다. 일정한 규칙성을 지닌 방법으로 설계를 하므로 전체 디지털 회로를 세부적으로 나누어 배열 시 쉽고 빠르게 검출할 수 있다.

  • PDF

Retina-Motivated CMOS Vision Chip Based on Column Parallel Architecture and Switch-Selective Resistive Network

  • Kong, Jae-Sung;Hyun, Hyo-Young;Seo, Sang-Ho;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.783-789
    • /
    • 2008
  • A bio-inspired vision chip for edge detection was fabricated using 0.35 ${\mu}m$ double-poly four-metal complementary metal-oxide-semiconductor technology. It mimics the edge detection mechanism of a biological retina. This type of vision chip offer several advantages including compact size, high speed, and dense system integration. Low resolution and relatively high power consumption are common limitations of these chips because of their complex circuit structure. We have tried to overcome these problems by rearranging and simplifying their circuits. A vision chip of $160{\times}120$ pixels has been fabricated in $5{\times}5\;mm^2$ silicon die. It shows less than 10 mW of power consumption.

  • PDF

A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight

  • Paranjape, Aditya A.;Dorothy, Michael R.;Chung, Soon-Jo;Lee, Ki-D.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.267-281
    • /
    • 2012
  • This paper reviews the flight mechanics and control of birds and bird-size aircraft. It is intended to fill a niche in the current survey literature which focuses primarily on the aerodynamics, flight dynamics and control of insect scale flight. We review the flight mechanics from first principles and summarize some recent results on the stability and control of birds and bird-scale aircraft. Birds spend a considerable portion of their flight in the gliding (i.e., non-flapping) phase. Therefore, we also review the stability and control of gliding flight, and particularly those aspects which are derived from the unique control features of birds.