• Title/Summary/Keyword: Bio-functionalization

Search Result 15, Processing Time 0.027 seconds

Functionalization of Multi-walled Carbon Nanotube by Treatment with Dry Ozone Gas for the Enhanced Dispersion and Adhesion in Polymeric Composites

  • Kim, Jung-Hwan;Min, Byung-Gil
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.298-303
    • /
    • 2010
  • A method of functionalization of multi-walled carbon nanotube (MWNT) at room temperature using dry ozone gas is described. The resulting MWNT were characterized by Fourier transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. Combined to these analyses and solubility in liquids, it could be concluded that the dry ozone gas exposure introduces polar functional groups such as carboxylic groups to MWNT similar to acidic modification of MWNT. Particularly, the stable dispersion of MWNT in water after ozone treatment above a critical level could be obtained, implying potential bio-application. The hydrophilic functional groups on the MWNT introduced by ozone oxidation were helpful in improving the interaction with functional groups in PA6 such as $-NH_2$ and -CONH- resulting in improved mechanical properties.

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • Yun, Ok-Ja
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

Bio-functionalization of the Single Layer Graphene for Detecting the Cancer Cell

  • Oh, Hyung Sik;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.1-429.1
    • /
    • 2014
  • We present a method of surface functionalization of a single layer graphene for linking and detecting MDA-MB-231 human breast cancer cell. The methodology is done by utilizing 1-pyrenebutanoic acid and succinimidyl ester for immobiling CD44 antibodies. This work shows that the single layer graphene is an efficient fixing substance to capture the MDA-MB-231 human breast cancer cell, selectively. The immobilization method of the cancer cell on the graphene layer will be an effective cell counting system. Moreover usage of the linking with non-covalent bonding is expected to develope a sensor scheme of electrical cell-detecting diagnosis system.

  • PDF

Band Structure Engineering of Monolayer MoS2 by Surface Ligand Functionalization

  • Lee, Sang Yoon;Ramzan, Sufyan
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.367-370
    • /
    • 2015
  • Monolayer transition metal dicalcogenide (TMDC) materials are currently attracting extensive attention due to their distinctive electronic, transport, and optical properties. For example, monolayer $MoS_2$ exhibits a direct band gap in the visible frequency range, which makes it an attractive candidate for the photocatalytic water splitting. For the photoelectrochemical water splitting, the appropriate band edge positions that overlap with the water redox potential are necessary. Similarly, appropriate band level alignments will be crucial for the light emitting diode and photovoltaic applications utlizing heterojunctions between two TMDC materials. Carrying out first-principles calculations, we here investigate how the band edges of $MoS_2$ can be adjusted by surface ligand functionalization. This study will provide useful information for the realization of ligand-based band engineering of monolayer $MoS_2$ for various electronic, energy, and bio device applications.

  • PDF

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.