• 제목/요약/키워드: Bio Plant

검색결과 2,437건 처리시간 0.046초

국산 낙엽송으로 제조한 에코우드포트(Eco Wood pots)의 식물 생장 효과에 관한 연구 (A Study on the Effect of Plants Growth on Eco Wood Pots)

  • 오근혜;김희진;양승민;남정빈;강석구
    • 한국가구학회지
    • /
    • 제29권1호
    • /
    • pp.18-23
    • /
    • 2018
  • The purpose of this study was to develop wood pots for create Optimum environment of plant growth using unused wood. to prove this, we examined the effects of cycle of water supply and nutrient concentration in wood pots on plant germination rate and growth factors (leaf number, stem diameter and length). The results are as follows. 1) The growth rate was higher at once of 2 days watering period. This suggests that the growth of the plants was better than that of the less water because the larch pots itself has the water retention capacity inside. 2) Germination rate and growth rate were better than other treatment groups when the concentration of nutrient solution was 0.5%. 3) Nitrogen, available phosphoric acid, and potassium showed higher contents than the nutrient - treated soil at 0.5% concentration of nutrient solution. This indicates that the nutrient solution absorbed from the larch affected the soil and plant growth in the inside.

  • PDF

Isolation and Identification of Tyrosinase Inhibitors from Loranthus tanakae

  • Hwang, Woonsang;Park, Cheolson;Kim, Jaehyun;Ko, In-Young;Lee, Kooyeon
    • 한국자원식물학회지
    • /
    • 제30권6호
    • /
    • pp.618-622
    • /
    • 2017
  • Various bioactive substances are found in Loranthus tanakae, including quercetin 3-rhamnoside (1), kaempferol 3-rhamnoside (2), rhamnetin 3-rhamnoside (3), and rhamnocitrin 3-rhamnoside (4), which inhibit tyrosinase. These compounds are mainly found in the EtOAc fraction of L. tanakae extract and demonstrate higher rates of tyrosinase inhibition than ascorbic acid, which was used as a control. Our results suggest that L. tanakae extracts can be utilized in skin whitening cosmetics.

Molecular Cloning and Characterization of Soybean Cinnamoyl CoA Reductase Induced by Abiotic Stresses

  • So, Hyun-Ah;Chung, Eun-Sook;Cho, Chang-Woo;Kim, Kee-Young;Lee, Jai-Heon
    • The Plant Pathology Journal
    • /
    • 제26권4호
    • /
    • pp.380-385
    • /
    • 2010
  • Suppression subtractive hybridization was used to isolate wound-induced genes from soybean. One of the wound-induced genes, gmwi143 designated as GmCCR, showed high homology with genes encoding cinnamoyl-CoA reductase (CCR; EC 1.2.1.44). Deduced amino acid sequences encoded by GmCCR showed the highest identity (77%) with those of Acacia CCR. There are 2 CCR genes highly homologous to GmCCR in soybean genome based on Phytozome DB analysis. RNA expression of GmCCR was specifically induced by local and systemic wounding, drought, high salinity or by ultraviolet stress. Our study suggests that GmCCR may be involved in resistance mechanism during abiotic stresses in plants.

Anti-fibrotic Effects of Saccharomyces cerevisiae Fermented Tenebrio molitor on TGF-β1-stimulated LX-2 Cells.

  • Lim, Hyeon-Ji;Park, In-Sun;Jung, Chan-Hun;Kim, Ji-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.70-70
    • /
    • 2019
  • Hepatic fibrosis is a common chronic liver diseases, characterized by the excessive deposition of extracellular matrix (ECM). Activation of hepatic stellate cells (HSC) is proliferative and fibrogenic and accumulating ECM. Transforming growth factor $(TGF)-{\beta}1$ is a critical mediator of HSC activation and ECM accumulation leading to fibrosis. Tenebrio molitor (TM), known as yellow mealworms, is reported in many countries as the nutritional value of foods. Our study has aims of finding liver function improvement effect of S. cerevisiae fermented Tenebrio molitor (SCTM) in vitro model. SCTM regulates $TGF-{\beta}1$ induced hepatic fibrosis via regulation of the $TGF-{\beta}1/Smad$ signaling. Also, we compared the components increased by yeast fermentation. It is possible to make a useful insect-derived alternative food in the improvement of hepatic liver disease.

  • PDF

The complete chloroplast genome of Glycyrrhiza uralensis Fisch. isolated in Korea (Fabaceae)

  • KIM, Mi-Hee;PARK, Suhyeon;LEE, Junho;BAEK, Jinwook;PARK, Jongsun;LEE, Gun Woong
    • 식물분류학회지
    • /
    • 제51권4호
    • /
    • pp.353-362
    • /
    • 2021
  • The chloroplast genome of Glycyrrhiza uralensis Fisch was sequenced to investigate intraspecific variations on the chloroplast genome. Its length is 127,689 bp long (34.3% GC ratio) with atypical structure of chloroplast genome, which is congruent to those of Glycyrrhiza genus. It includes 110 genes (76 protein-coding genes, four rRNAs, and 30 tRNAs). Intronic region of ndhA presented the highest nucleotide diversity based on the six G. uralenesis chloroplast genomes. A total of 150 single nucleotide polymorphisms and 10 insertion and deletion (INDEL) regions were identified from the six G. uralensis chloroplast genomes. Phylogenetic trees show that the six chloroplast genomes of G. uralensis formed the two clades, requiring additional studies to understand it.

Overview of Arabidopsis Resource Project in Japan

  • Kobayashi, Masatomo
    • Interdisciplinary Bio Central
    • /
    • 제3권1호
    • /
    • pp.2.1-2.4
    • /
    • 2011
  • Arabidopsis is well-known to the world's plant research community as a model plant. Many significant resources and innovative research tools, as well as large bodies of genomic information, have been created and shared by the research community, partly explaining why so many researchers use this small plant for their research. The genome sequence of Arabidopsis was fully characterized by the end of the $20^{th}$ century. Soon afterwards, the Arabidopsis research community began a 10-year international project on the functional genomics of the species. In 2001, at the beginning of the project, the RIKEN BioResource Center (BRC) started its Arabidopsis resource project. The following year, the National BioResource Project was launched, funded by the Japanese government, and the RIKEN BRC was chosen as a core facility for Arabidopsis resource. Seeds of RIKEN Arabidopsis transposon-tagged mutant lines, activation-tagged lines, full-length cDNA over-expresser lines, and natural accessions, as well as RIKEN Arabidopsis full-length cDNA clones and T87 cells, are preserved at RIKEN BRC and distributed around the world. The major resources provided to the research community have been full-length cDNA clones and insertion mutants that are suitable for use in reverse-genetics studies. This paper provides an overview of the Arabidopsis resources made available by RIKEN BRC and examples of research that has been done by users and developers of these resources.

Differential expression of soybean SLTI100 gene encoding translation elongation factor 1A by abiotic stresses

  • Chung, Eun-Sook;Cho, Chang-Woo;So, Hyun-A;Yun, Bo-Hyun;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.255-260
    • /
    • 2009
  • The translation elongation factor 1A, eEF1A, catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. By subtractive suppression hybridization technique, we have isolated a soybean low-temperature inducible gene, SLTI100 encoding translation elongation factor 1A. Multiple sequence alignments and phylogenic analysis showed that SLTI100 and other eEF1As originated from diverse organisms are highly conserved. RNA expression of SLTI100 was specifically induced by low temperature, high salt, ABA, or drought stress. Based on the subcellular localization of the corresponding gene product fused to GFP, we were able to confirm that SLTI100-GFP was restricted to the nucleus and cytoplasm. We propose that soybean eEF1A may play an important role in translational regulation during abiotic stress responses in plants.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Non-coding RNAs Associated with Biotic and Abiotic Stresses in Plants

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Muk;Koo, Bon-Sung
    • Journal of Applied Biological Chemistry
    • /
    • 제55권2호
    • /
    • pp.71-77
    • /
    • 2012
  • Many of biochemical or physiological processes can be regulated by non-coding RNAs as well as coding RNAs in plants, animals and microbes. Recently, many small RNAs including microRNAs (miRNAs) and endogenous small interference RNAs (siRNAs) and long non-coding RNAs have been discovered from ubiquitous organisms including plants. Biotic and abiotic stresses are main causal agents of crop losses all over the world. Much efforts have been performed for understanding the complex mechanism of stress responses. Up to date, many of these researches have been related with the identification and investigation of stress-related proteins, showing limitation to resolve the complex mechanism. Recently, non-coding RNAs as well as coding genes have been gradually interested because of its potential roles in plant stress responses as well as other biophysical aspects. In this review, various potential roles of non-coding RNAs, especially miRNAs and siRNAs, are reviewed in relation with plant biotic and abiotic stresses.