• Title/Summary/Keyword: Binomial Method

Search Result 175, Processing Time 0.018 seconds

AN EFFICIENT BINOMIAL TREE METHOD FOR CLIQUET OPTIONS

  • Moon, Kyoung-Sook;Kim, Hong-Joong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.83-96
    • /
    • 2011
  • This work proposes a binomial method for pricing the cliquet options, which provide a guaranteed minimum annual return. The proposed binomial tree algorithm simplifies the standard binomial approach, which is problematic for cliquet options in the computational point of view, or other recent methods, which may be of intricate algorithm or require pre- or post-processing computations. Our method is simple, efficient and reliable in a Black-Scholes framework with constant interest rates and volatilities.

Coherent Forecasting in Binomial AR(p) Model

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • This article concerns the forecasting in binomial AR(p) models which is proposed by Wei$\ss$ (2009b) for time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson innovations. Forecasts are produced by conditional median which gives 'coherent' forecasts, and we estimate the forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors are calculated by means of block of block bootstrap. The method is fitted to log data set used in Wei$\ss$ (2009b).

The Origin of Newton's Generalized Binomial Theorem (뉴턴의 일반화된 이항정리의 기원)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.127-138
    • /
    • 2014
  • In this paper we investigate how Newton discovered the generalized binomial theorem. Newton's binomial theorem, or binomial series can be found in Calculus text books as a special case of Taylor series. It can also be understood as a formal power series which was first conceived by Euler if convergence does not matter much. Discovered before Taylor or Euler, Newton's binomial theorem must have a good explanation of its birth and validity. Newton learned the interpolation method from Wallis' famous book ${\ll}$Arithmetica Infinitorum${\gg}$ and employed it to get the theorem. The interpolation method, which Wallis devised to find the areas under a family of curves, was by nature arithmetrical but not geometrical. Newton himself used the method as a way of finding areas under curves. He noticed certain patterns hidden in the integer binomial sequence appeared in relation with curves and then applied them to rationals, finally obtained the generalized binomial sequence and the generalized binomial theorem.

A maximum likelihood estimation method for a mixture of shifted binomial distributions

  • Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.255-261
    • /
    • 2014
  • Many studies have estimated a mixture of binomial distributions. This paper considers an extension, a mixture of shifted binomial distributions, and the estimation of the distribution. The range of each component binomial distribution is rst evaluated and then for each possible value of shifted parameters, the EM algorithm is employed to estimate those parameters. From a set of possible value of shifted parameters and corresponding estimated parameters of the distribution, the likelihood of given data is determined. The simulation results verify the performance of the proposed method.

The Pedagogical Analysis of the History of Mathematics on Newton's Binomial Theorem (뉴턴의 이항정리에 대한 수학사의 교수법적 고찰)

  • Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.23 no.4
    • /
    • pp.1079-1092
    • /
    • 2009
  • The purpose of this study is to investigate Newton's binomial theorem that was on epistemological basis of the emergent background and developmental course of infinite series and power series. Through this investigation, it will be examined how finding the approximate of square root of given numbers, the method of the inverse method of fluxions by Newton, and Gregory and Mercator series were developed in the course of history of mathematics. As the result of this study pedagogical analysis and discussion of the history of mathematics on Newton's binomial theorem will be presented.

  • PDF

An Improved Binomial Method using Cell Averages for Option Pricing

  • Moon, Kyoung-Sook;Kim, Hong-Joong
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • We present an improved binomial method for pricing financial deriva-tives by using cell averages. After non-overlapping cells are introduced around each node in the binomial tree, the proposed method calculates cell averages of payoffs at expiry and then performs the backward valuation process. The price of the derivative and its hedging parameters such as Greeks on the valuation date are then computed using the compact scheme and Richardson extrapolation. The simulation results for European and American barrier options show that the pro-posed method gives much more accurate price and Greeks than other recent lattice methods with less computational effort.

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.

Hierarchical Bayesian Inference of Binomial Data with Nonresponse

  • Han, Geunshik;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.45-61
    • /
    • 2002
  • We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

Ex-ante and Ex-post Economic Value Analysis on Ecological River Restoration Project (생태하천복원사업 전후 경제적 가치 비교분석)

  • Lee, Yoon;Chang, Hoon;Yoon, Taeyeon;Chung, Young-Keun;Park, Heeyoung
    • Journal of the Korean Regional Science Association
    • /
    • v.31 no.3
    • /
    • pp.39-54
    • /
    • 2015
  • To assess an economic value of Cheonggyecheon river restoration project, an in-depth exit survey data was collected to apply travel cost method in this study. Poisson model, Negative Binomial, Zero-truncated Poisson, and Zero-truncated Negative Binomial model were executed due to the nature of count data. Empirical results showed that regressors were statistically significant and corresponded to general consumer theory. Since our survey data showed over-dispersion, Zero-truncated Negative Binomial was selected as an optimal one to analyze travel demand of Cheonggyecheon by model goodness of fit test among those aforementioned empirical models. Estimating an economic value of Cheonggyecheon river restoration project, which is known as an ecological river restoration project, we used annual visit of individual traveler and an optimal model. Suffice to say that the annual economic value of Cheonggyecheon river restoration project was estimated as 193.4 billion won in 2013.