• Title/Summary/Keyword: Binding parameters

Search Result 277, Processing Time 0.03 seconds

Effects of Jerusalem Artichoke Powder and Sodium Carbonate as Phosphate Replacers on the Quality Characteristics of Emulsified Chicken Meatballs

  • Ozturk, Burcu;Serdaroglu, Meltem
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.26-42
    • /
    • 2018
  • Today incorporation of natural ingredients as inorganic phosphate replacers has come into prominence as a novel research topic due to health concerns about phosphates. In this study, we aimed to investigate the quality of emulsified chicken meatballs produced with Jerusalem artichoke powder (JAP), either alone or in combination with sodium carbonate (SC) as sodium tripolyphosphate (STPP) replacers. The results showed that naturally dried JAP showed favorable technological properties in terms of water-oil binding and gelling. Emulsion batters formulated with JAP-SC mixture showed lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with STPP. In final product, incorporation of JAP-SC mixture increased moisture and reduced lipid and energy values, and kept the pH value similar to control. Added JAP lead to increments in $b^*$ values whereas decreases $L^*$ values. Cook yield was similar to control in phosphate-free samples formulated with JAP-SC mix. Either low or medium ratios of JAP in combination with SC managed to protect most of the sensory parameters, while sensory scores tend to decrease in samples containing high levels of JAP. Addition of JAP to formulations presented samples that have equivalent behavior to phosphates in terms of lipid oxidation. In conclusion, our study confirms that utilization of JAP in combination with SC had promising effects as phosphate replacers by presenting natural solutions and providing equivalent quality to standard phosphate containing products.

Synthesis and characterization of sugarcane bagasse/zinc aluminium and apple peel/zinc aluminium biocomposites: Application for removal of reactive and acid dyes

  • Safa, Yusra;Tariq, Saadia Rashid;Bhatti, Haq Nawaz;Sultan, Misbah;Bibi, Ismat;Nouren, Shazia
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • In this research work, synthesis of sugarcane bagasse/zinc aluminium biocomposite and apple peel/zinc aluminium biocomposite and their application for removal of Reactive Red-241 and Acid Orange-7, respectively, was studied using various parameters. At pH 2 the sorption was the highest for both dyes. The trend showed that the dye sorption declined by decreasing the biocomposite dose and enhanced by increasing the dye concentration and temperature. Equilibrium was achieved at 60 minutes for Reactive Red-241 onto sugarcane bagasse/zinc aluminium biocomposite and 90 minutes for Acid Orange-7 onto apple peel/zinc aluminium biocomposite.The research data was good fitted to pseudo-2nd-order kinetic model and Langmuir isotherm. FT-IR analysis was used to confirm the biosorption of the selected dyes at the surface of biosorbent through various binding sites. Surface morphology modification of both biocomposites before and after biosorption was inspected through SEM. Crystallinity of biocomposite was examined through XRD analysis. It was implied that sugarcane bagasse/ zinc aluminium biocomposite and apple peel/ zinc aluminium biocomposite are good adsorbents for dyes elimination from aqueous solutions.

Effects of $H_2$ vs. $O_2$ Plasma Pretreatment of Gate Oxide on the Degradation Phenomenon of Low-Temperature Polysilicon Thin-Film Transistors

  • Lee, Seok-Woo;Kang, Ho-Chul;Yang, Joon-Young;Kim, Eu-Gene;Kim, Sang-Hyun;Lim, Kyoung-Moon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1254-1257
    • /
    • 2004
  • Comparative study on the effects of $H_2$ vs. $O_2$ plasma pretreatment of gate oxide on the degradation phenomenon of p-channel low-temperature polysilicon (LTPS) thin-film transistors (TFTs) were performed. After high drain current stress (HDCS) with $V_{gs}$ = $V_{ds}$, the p-channel TFTs pretreated by $O_2$ plasma showed increased immunity to the degradation of device characteristics such as threshold voltage and maximum field effect mobility because of the higher binding energy of Si-O bond than that of Si-H bond. The investigation of degradation phenomenon of these parameters with the applied power suggests that self-heating can be the major cause of degradation of polysilicon TFTs.

  • PDF

Technical and clinical aspects of cortisol as a biochemical marker of chronic stress

  • Lee, Do Yup;Kim, Eosu;Choi, Man Ho
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • Stress is now recognized as a universal premorbid factor associated with many risk factors of various chronic diseases. Acute stress may induce an individual's adaptive response to environmental demands. However, chronic, excessive stress causes cumulative negative impacts on health outcomes through "allostatic load". Thus, monitoring the quantified levels of long-term stress mediators would provide a timely opportunity for prevention or earlier intervention of stressrelated chronic illnesses. Although either acute or chronic stress could be quantified through measurement of changes in physiological parameters such as heart rate, blood pressure, and levels of various metabolic hormones, it is still elusive to interpret whether the changes in circulating levels of stress mediators such as cortisol can reflect the acute, chronic, or diurnal variations. Both serum and salivary cortisol levels reveal acute changes at a single point in time, but the overall long-term systemic cortisol exposure is difficult to evaluate due to circadian variations and its protein-binding capacity. Scalp hair has a fairy predictable growth rate of approximately 1 cm/month, and the most 1 cm segment approximates the last month's cortisol production as the mean value. The analysis of cortisol in hair is a highly promising technique for the retrospective assessment of chronic stress. [BMB Reports 2015; 48(4): 209-216]

Enhanced Partitioning of Proteins in Metal-Affinity Aqueous Two-Phase Systems (금속 친화성 액 이상분계 시스템에서 단백질의 분배 향상)

  • Chung, Bong-Hyun;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.336-341
    • /
    • 1993
  • In metal-affinify aqueous two-phase systems, protein partitioning is affected by a variety of parameters such as pH, the number of surface-accessible histidines, and the amount and partition coefficient of metallated polythylene glyco(PEG) ligand. To enhance partitioning of proteins with surface-accessible histidines, we have synthesized and used a (Cu(II)-ininodiacetic acid)$_2$-PEG20,000($Cu(II)_2IDA_2$-PEG20,000) as well as Cu(II)IDA-PEG5,000 as an affinity ligand. The partition coefficient of $Cu(II)_2-IDA_2$-PEG20,000 in a PEG5,000/dextran two-phase system was 30.1, which corresponded to a 3.8-fold increase over that of Cu(II)IDA-PEG5,000. The partitioning experiments were performed on four proteins, horse cytochrome c, S. cerevisiae cytochrome c, horse myoglobin, and sheep myoglobin. Partitioning of proteins which convey surface-accessible histidines was enhanced dramatically by the addition of $Cu(II)_2IDA_2$-PEG20,000 ligand. These results demonstrate that enhanced partitioning of metal-binding proteins in an aqueous two -phase system can by achieved by using an appropriate metallated PEG ligand.

  • PDF

Searching of the Potent Pig Pheromonal Odorants by Receptor Based Approach (수용체 접근방법에 의한 잠재적인 돼지 페로몬 성 냄새 물질의 탐색)

  • Joo, Sung-Mo;Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.117-122
    • /
    • 2010
  • To search the potent pig pheromonal odorants through receptor-based approach methods, molecular dockings between 680 Flavomets as substrate molecule and pig odorants binding proteins OBP (1HQP) and PBP (1GM6) as receptor, and QSPR (quantitative structure-property relationship) analyses from physico-chemical parameters of Flavomets and their docking scores (DS) were performed and discussed quantitatively. From the basis on the findings, the optimal value $(MSA)_{opt.}=407.595\;{\AA}^2$ of MSA (molecular surface area; ${\AA}$), and RB (number of rotational bond) had the Flavomets will be able to increase DS. Therefore, it is expected that the stearyl alcohol from DS and H-bond type between substrate and receptor would be shows the character as potent pig pheromonal odorant.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. SMN4

  • Lee, Na-Ri;Lee, Jang-Mi;Min, Kyung-Hee;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.487-494
    • /
    • 2003
  • 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO), an enzyme of the biphenyl biodegradation pathway encoded by the bphC gene of Comnmonas sp. SMN4, was expressed and purified using column chromatographies. SDS-PAGE of purified 23DBDO showed a single band with a molecular mass of 32 kDa, which was consistent with the data from the gel filtration chromatography (GFC). The purified enzyme exhibited a maximum 23DBDO activity at pH 9.0 and was stable at pH 8.0. The enzyme showed maximum activity at $40^{\circ}C$ and maintained activity at $30^{\circ}C$ for 24 h. Kinetic parameters represented by Michaelis-Menten constants such as $K_m\;and\;V_{max}$ values for various substrates were determined by Lineweaver-Burk plots: The purified enzyme 23DBDO from Comamonas sp. SMN4 had the highest catalytic activity for 2,3-dihydroxybiphenyl and 3-methylcatechol, and had very poor activity with catechol and 4-methylcatechol.

Bioequivalence of Hepaphil Soft Capsule to Nissel Tablet (닛셀정에 대한 헤파필연질캡슐의 생물학적 동등성 평가)

  • Ko, In-Ja;Chi, Sang-Cheol
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.379-383
    • /
    • 2004
  • Biphenyl dimethyl dicarboxylate (DDB) has been used for the treatment of chronic viral hepatitis B and drug-induced hepatitis through the inhibition of lipid peroxidation and c ovalent binding of drug metabolites to lipids of microsomes. The bioequivalence of two DDB products was evaluated according to the guidelines of KFDA. The test product was Hepaphil soft capsule(R) made by KMS Pharm. Co. Containing 3 mg DDB and the reference product was Nissel tablet(R) made by Taerim Pharm. Co. Containing 25 mg DDB. Twenty healthy male subjects, 25.4(22~30) years old and 66.7(54~77)kg, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two tablets or two capsules were orally administered, blood was taken at predetermined time intervals and the concentration of DDB in plasma was determined using a validated HPLC method with UV detector. Two pharmacokinetic parameters, $AUC_t$ and $C_{max}$, were calculated and analyzed statistically for the evaluation of bioequivalence of the two products. Analysis of variance was carried out using logarithmically transformed parameter values. The 90% confidence intervals of $AUC_t$ and $C_{max}$ were log 0.91~log1.00 and log 1.05~log 1.15, respectively. These values were within the acceptable bioequivalence intervals of log 0.8 to log 1.25. Thus, the criteria of the KFDA guidelines for the bioequivalence was satisfied, indicating that Hepaphil soft capsule is bioequivalent to Nissel tablet.

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases

  • M, Shalini;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.164-175
    • /
    • 2015
  • CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.

Dry Etching Characteristics of TiN Thin Films in BCl3/He Inductively Coupled Plasma (BCl3/He 유도결합 플라즈마를 이용한 TiN 박막의 식각 특성)

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.681-685
    • /
    • 2012
  • We investigated the dry etching characteristics of TiN in $TiN/Al_2O_3$ gate stack using a inductively coupled plasma system. TiN thin film is etched by BCl3/He plasma. The etching parameters are the gas mixing ratio, the RF power, the DC-bias voltages and process pressures. The highest etch rate is in $BCl_3/He$ (25%:75%) plasma. The selectivity of TiN thin film to $Al_2O_3$ is pretty similar with $BCl_3/He$ plasma. The chemical reactions of the etched TiN thin films are investigated by X-ray photoelectron spectroscopy. The intensities of the Ti 2p and the N 1s peaks are modified by $BCl_3$ plasma. Intensity and binding energy of Ti and N could be changed due to a chemical reaction on the surface of TiN thin films. Also we investigated that the non-volatile byproducts such as $TiCl_x$ formed by chemical reaction with Cl radicals on the surface of TiN thin films.