• 제목/요약/키워드: Binding energy

검색결과 770건 처리시간 0.03초

Substrate Ground State Binding Energy Concentration Is Realized as Transition State Stabilization in Physiological Enzyme Catalysis

  • Britt, Billy Mark
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.533-537
    • /
    • 2004
  • Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.

Binding Free Energy Simulations of the HIV-1 Protease and Hydroxyethylene Isostere Inhibitors

  • 원영도
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1207-1212
    • /
    • 2000
  • The free energy simulation technique is used to evaluate the relative binding affinity of a set of hydroxyethylene isostere inhibitors of the HIV-1 protease. The binding reactions and an alchemical mutation construct the thermodynamic cycle, which reduces the free energy difference of the binding interactions into that of the alchemical processes. In the alchemical process, a methyl group is mutated into a hydrogen atom. Albeit the change is a small perturbation to the inhibitor-protease complex, it results in 25 fold difference in the binding constants. The simulation reproduces the experimentally measured binding affinities within 2% of the free energy difference. The protonation state of the catalytic aspartic acid residues is also investigated through the free energy simulations.

Al2Gax-1A3-GaAs 양자우물에서 시도함수에 따른 결합에너지 (Binding Energy in the n-type Al2Gax-1A3-GaAs Quantum well according to the Trial function)

  • 이건영;이무상;전상국
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.781-786
    • /
    • 2005
  • The binding energy in the n-type $GaAs/Al_xGa_{1-x}As$ quantum well is calculated. The shooting method, modified from the finite difference method, is used for the calculation of the subband energy level and its wave function. In order to account tot the change of the potential energy due to the charged particles, impurities and electrons, the self consistent method is employed. The wave function used for the calculation of the binding energy is assumed to be composed of the envelope function and hydrogenic 1s function. Then, the binding energies calculated by taking into account lot two different types of the hydrogenic 1s function are compared.

Prediction of Relative Stability between TACE/Gelastatin and TACE/Gelastatin Hydroxamate

  • Nam, Ky-Youb;Han, Gyoon-Hee;Kim, Hwan-Mook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3291-3296
    • /
    • 2010
  • A gelastatins (1), natural MMP inhibitors, and their hydroxamate analogues (2) in TACE enzyme evaluated for discovery of potent TACE inhibitors. We have employed molecular dynamics simulations to compute the relative free energy of hydration and binding to TACE for gelastatin (1) and its hydroxamate analogue (2). The relative free energy difference is directly described in this article using the free energy perturbation approach as a means to accurately predict the TACE inhibitor of gelastatin analogues. The results show that the good agreement between the experimental and theoretical relative free energies of binding, gelastatin hydroxamate (2) binds stronger to TACE by -3.37 kcal/mol. The desolvation energy costs significantly reduced binding affinity, hydroxamate group associated with high desolvation energy formed strong favorable interactions with TACE with more than compensated for the solvation costs and therefore led to an improvement in relative binding affinity.

Toward an Accurate Self-interaction Binding Energy of Magic Cluster TiAu_4

  • Han, Young-Kyu;Kim, Jong-Chan;Jung, Jae-Hoon;Yu, Ung-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.305-308
    • /
    • 2008
  • We performed coupled-cluster calculations to determine the intermolecular interaction energy between two TiAu4 clusters. Our ab initio calculations predict that the binding energy is 2.89 eV, which is somewhat larger than the known binding energy of 2.0 eV for TiH4-TiH4. The intermolecular binding energy is relatively high, despite TiAu4 having all the attributes of a magic cluster. The favorable orbital interaction between occupied Au(6s) and unoccupied Ti(3d) orbitals leads to the strong dimeric interaction for TiAu4-TiAu4.

밀도 함수를 이용한 지르코니움, 바나듐, 철과 수소와의 반응성 연구 (The Hydrogen Binding Property Study by Density Functional Theory for Zr, V, Fe and Al)

  • 박태성;이택홍
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.602-608
    • /
    • 2014
  • The sequence of bond overlap population of metal hydrogen binding is in Al-H > Fe-H > Zr-H > V-H. This results shows the binding energy of Al-H is the biggest in this metals (Al, Fe, Zr, and V) and hydrogen interaction. The Vanadium-hydrogen binding shows the weakest binding energy compared to other metals and it causes easy hydrogen desorption from the corresponding metals. The net charge of Al-H show the biggest value of 0.2248 and the severe localizations of electrons around aluminum and imply strongest covalent binding nature in these metals. This study is applicable to the purification of hydrogen in other bulk gas.

Theoretical Approach for the Structures, Energetics and Spectroscopic Properties of (H2O3)n (n = 1-5) Clusters

  • Seo, Hyun-Il;Bahng, Jin-Ah;Kim, Yeon-Cheol;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3017-3024
    • /
    • 2012
  • The geometrical parameters, vibrational frequencies, and binding energies for $(H_2O_3)_n$ (n = 1-5) have been investigated using various quantum mechanical techniques. The possible structures of the clusters (n = 2-5) are fully optimized and the binding energies are predicted using energy differences at each optimized geometry. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the binding energy. The best estimation of the binding energy for the dimer is 8.65 kcal/mol. For n = 2 and 3, linear structures with all trans forms of the HOOOH monomers are predicted to be the lowest conformations in energy, while the cyclic structures with all cis-HOOOH monomers are preferable structures for n = 4 and 5.

Binding energy of H2 to MOF-5: A Model Study

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4199-4204
    • /
    • 2011
  • Using models simulating the environment of two distinct adsorption sites of $H_2$ in metal-organic framework-5 (MOF-5), binding energies of $H_2$ to MOF-5 were evaluated at the MP2 and CCSD(T) level. For organic linker section modeled as dilithium 1,4-benzenedicarboxylate ($C_6H_4(COO)_2Li_2$), the MP2 and CCSD(T) basis set limit binding energies are estimated to be 5.1 and 4.4 kJ/mol, respectively. For metal oxide cluster section modeled as $Zn_4O(CO_2H)_6$, while the MP2 basis set limit binding energy estimate amounts to 5.4 kJ/mol, CCSD(T) correction to the MP2 results is shown to be insignificant with basis sets of small size. Substitution of benzene ring with pyrazine ring in the model for the organic linker section in MOF-5 is shown to decrease the $H_2$ binding energy noticeably at both the MP2 and CCSD(T) level, in contrast to the previous study based on DFT calculation results which manifested substantial increase of $H_2$ binding energies upon substitution of benzene ring with pyrazine ring in the similar model.

The Binding Energy of HIV-1 Protease Inhibitor

  • 가재진;박상현;김호징
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권1호
    • /
    • pp.19-24
    • /
    • 1996
  • The potential energies of HIV-1 protease, inhibitor, and their complex have been calculated by molecular mechanics and the "binding energy", defined as the difference between the potential energy of complex and the sum of potential energies of HIV-1 protease and its inhibitor, has been compared to the free energy in inhibition reaction. The trend in these binding energies seems to agree with that in free energies.

HOOCl-H2O Cluster의 구조와 결합에너지에 대한 ab initio 연구 (Ab Initio Study of the Structure and Binding Energy of HOOCl-H2O Cluster)

  • 김영미;성은모
    • 대한화학회지
    • /
    • 제52권3호
    • /
    • pp.322-327
    • /
    • 2008
  • HOOCl-H2O cluster에 대하여 안정한 구조와 결합에너지를 MP2/6-311G(d,p), MP2/6-311G(2d,2p)의 방법으로 계산하였고 vibrational frequency계산을 하여 HOOCl의 vibrational frequency와 비교하였다. Skew HOOCl-H2O cluster가 가장 안정한 cluster로 나타났고 결합에너지는 46~48 kJ/mol 정도이며 trans HOOCl-H2O cluster의 경우도 이보다 불안정하나 비교적 큰 결합에너지를 갖는 것으로 나타났다.