• Title/Summary/Keyword: Binding Mode

Search Result 203, Processing Time 0.023 seconds

Molecular Docking Studies of p21-Activated Kinase-1 (PAK1) Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2016
  • The p21-activated kinase-1 (PAK1) has emerged as a potential target for anticancer therapy. It is overexpressed in ovarian, breast and bladder cancers. This suggests that PAK1 may contribute to tumorigenesis. 4-azaindole derivatives are reported as potent PAK1 inhibitors. The present work deals with the molecular docking studies of 4-azaindoles with PAK1. Probable binding mode of these inhibitors has been identified by molecular modeling. Docking results indicated that hydrogen bonding interactions with Glu345 and Leu347 are responsible for governing inhibitor potency of the compounds. Additionally, Val284, Val328, Met344 and Leu396 were found to be accountable for hydrophobic interactions inside the active site of PAK1.

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Synthesis of Carbobenzoxy-alanyl-thiaarginine (thialysine) benzyl ester and kinetic Studies with Trypsin

  • 홍남주;장성훈;진동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 1998
  • Carbobenzoxy-alanyl-thiaarginine benzyl ester and carbobenzoxy-alanyl-thialysine benzyl ester were synthesized in solution. Kinetic studies were carried out using three different analytical methods, semi-classical method, progress curve analysis and competitive spectrophotometry. In competitive spectrophotometry, carbobenzoxy-valyl-glycyl-arginyl-p-nitroaniline was used as a detector. Kinetic constants such as $K_m$ and $V_{max}$ measured by competitive spectrophotometry are almost the same as those values measured by semi-classical method. Colorimetric Ellman's assays showed the thio-peptido mimetics to be a suitable substrates for trypsin. Kinetic studies with trypsin gave $K_m$ of 2.33 mM and $k_{cat}$ of $1.50{\times}10^5\;min^{-1}$ for carboxy-alanyl-thiaarginine benzyl ester and $K_m$ of $3.41{\times}10^{-3}\; Mm\; and\; k_{cat}\; of\; 520{\times}102\; min^{-1}$ for carbobenzoxy-alanyl-thialysine benzyl ester, respectively. Kinetic constants $(K_m=2.04{\times}10^{-2}\; mM, K_{cat}=4.42{\times}10^3 \;min^{-1})$ for natural substrate, carbobenzoxy-alanyl-lysine benzyl ester, were also evaluated by competitive spectrophotometry in order to compare the mode of binding on trypsin.

Advanced techniques of solution nuclear magnetic resonance spectroscopy for structural investigation of protein-protein interaction

  • Sugiki, Toshihiko;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.76-81
    • /
    • 2018
  • Investigation of the protein-protein interaction mode at atomic resolution is essential for understanding on the underlying functional mechanisms of proteins as well as for discovering druggable compounds blocking deleteriou interprotein interactions. Solution NMR spectroscopy provides accurate and precise information on intermolecular interactions even for weak and transient interactions, and it is also markedly useful for examining the change in the conformation and dynamics of target proteins upon binding events. In this mini-review, we comprehensively describe three unique and powerful methods of solution NMR spectroscopy, paramagnetic relaxation enhancement (PRE), pseudo-contact shift (PCS), and residual dipolar coupling (RDC), for the study on protein-protein interactions.

H-1, C-13, and N-15 resonance assignments of ENOD40B, a plant peptide hormone

  • Young Kee Chae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • t ENOD40B, a plant peptide hormone, was doubly labeled with C-13 and N-15 by recombinant production in Escherichia coli. The peptide was prepared by affinity chromatography followed by protease cleavage and reverse-phase chromatography. To elucidate the mode of action against its receptor, sucrose synthase, we proceeded to assign the backbone and side-chain resonances using a set of double and triple resonance experiments. This result will be used to determine the three-dimensional structure of the peptide at its bound state as well as to observe the chemical shift changes upon binding.

Biochemical Characterization of Exoribonuclease Encoded by SARS Coronavirus

  • Chen, Ping;Jiang, Miao;Hu, Tao;Liu, Qingzhen;Chen, Xiaojiang S.;Guo, Deyin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.649-655
    • /
    • 2007
  • The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires $Mg^{2+}$ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Genetic Variation in the ABCB1 Gene May Lead to mRNA Level Chabge: Application to Gastric Cancer Cases

  • Mansoori, Maryam;Golalipour, Masoud;Alizadeh, Shahriar;Jahangirerad, Ataollah;Khandozi, Seyed Reza;Fakharai, Habibollah;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8467-8471
    • /
    • 2016
  • Background: One of the major mechanisms for drug resistance is associated with altered anticancer drug transport, mediated by the human-adenosine triphosphate binding cassette (ABC) transporter superfamily proteins. The overexpression of adenosine triphosphate binding cassette, sub-family B, member 1 (ABCB1) by multidrug-resistant cancer cells is a serious impediment to chemotherapy. In our study we have studied the possibility that structural single-nucleotide polymorphisms (SNP) are the mechanism of ABCB1 overexpression. Materials and Methods: A total of 101 gastric cancer multidrug resistant cases and 100 controls were genotyped with sequence-specific primed PCR (SSP-PCR). Gene expression was evaluated for 70 multidrug resistant cases and 54 controls by real time PCR. The correlation between the two groups was based on secondary structures of RNA predicted by bioinformatics tool. Results: The results of genotyping showed that among 3 studied SNPs, rs28381943 and rs2032586 had significant differences between patient and control groups but there were no differences in the two groups for C3435T. The results of real time PCR showed over-expression of ABCB1 when we compared our data with each of the genotypes in average mode. Prediction of secondary structures in the existence of 2 related SNPs (rs28381943 and rs2032586) showed that the amount of ${\Delta}G$ for original mRNA is higher than the amount of ${\Delta}G$ for the two mentioned SNPs. Conclusions: We have observed that 2 of our studied SNPs (rs283821943 and rs2032586) may elevate the expression of ABCB1 gene, through increase in mRNA stability, while this was not the case for C3435T.