Figure 1. Illustration of paramagnetic effect-based NMR methods for investigation of protein-protein interactions. Effects of paramagnetic relaxation enhancement (PRE) (A) and pseudo-contact shift (PCS) (B) are shown. The alteration of the intensity (A) and chemical shift (B) of NMR signals of isotopically-labeled protein are analysed. PRE causes attenuation of the signal intensity depending on the distance, and PCS induces chemical shift changes depending on the distance and angle from the immobilized paramagnetic center (small red sphere). The region in which PRE and PCS, which affects the NMR signal, is highlighted with gray spheres with dotted line and four ellipses, respectively. Black spheres with numbering (in the target proteins) indicate the location of the residues, which are corresponding to the NMR spectra.
Figure 2. Schematic illustration of residual dipolar coupling (RDC) experiments. (A) Orientation of the dipole-dipole vector in the target protein in the cartesian space is determined. (B) Schematic representation of the two-dimensional 1H-15N spectrum for RDC. The “Aligned” and “Isotropic” (reference experiment) show peak splitting in the presence and absence of orienting media, respectively. JHN and D indicate the constants of J-coupling and RDC, respectively. The asterisk indicates the chemical shift alteration in the midpoint of the split signals (denoted as small circles), which results from the PCS effect when the alignment is achieved by lanthanide ions.
References
- G. Otting, Annu. Rev. Biophys. 39, 387 (2010) https://doi.org/10.1146/annurev.biophys.093008.131321
- G. M. Clore and J. Iwahara, Chem. Rev. 109, 4108 (2009) https://doi.org/10.1021/cr900033p
- S. R. Tzeng, M. T. Pai, and C.G. Kalodimos, Methods Mol. Biol. 831, 133 (2012)
- Y. Yang, F. Huang, T. Huber, and X. C. Su, J. Biomol. NMR 64, 103 (2016) https://doi.org/10.1007/s10858-016-0011-7
- J. Wohnert, K. Franz, M. Nitz, B. Imperiali, and H. Schwalbe, J. Am. Chem. Soc. 125, 13338 (2003) https://doi.org/10.1021/ja036022d
- M. Hass and M. Ubbink, Curr. Opin. Struct. Biol. 24, 45 (2014) https://doi.org/10.1016/j.sbi.2013.11.010
- W. Liu, M. Overhand, and M. Ubbink, Coord. Chem. Rev. 273, 2 (2014)
- T. Saio, M. Yokochi, H. Kumeta, and F. Inagaki, J. Biomol. NMR 46, 271 (2010) https://doi.org/10.1007/s10858-010-9401-4
- P. H. Keizers and M. Ubbink, Prog. Nucl. Magn. Reson. Spectrosc. 58, 88 (2011) https://doi.org/10.1016/j.pnmrs.2010.08.001
- C. Tang, J. Iwahara, and G. M. Clore, Nature 444, 383 (2006) https://doi.org/10.1038/nature05201
- J. Iwahara and G. M. Clore, Nature 440, 1227 (2006) https://doi.org/10.1038/nature04673
- K. van de Water, N. van Nuland, and A. Volkov, Chem. Sci. 5, 4227 (2014) https://doi.org/10.1039/C4SC01232A
- Q. Xing, P. Huang, J. Yang, J. Sun, Z. Gong, X. Dong, D. Guo, S. Chen, Y. Yang, Y. Wang, M. Yang, M. Yi, Y. Ding, M. Liu, W. Zhang, and C. Tang, Angew. Chem. Int. Ed. 53, 11501 (2014) https://doi.org/10.1002/anie.201405976
- Z. Liu, Z. Gong, X. Dong, and C. Tang, Biochimi. Biophys. Acta 1864, 115 (2016) https://doi.org/10.1016/j.bbapap.2015.04.009
- G. M. Clore and A. Gronenborn, J. Magn. Reson. 53, 423 (1983)
- M. Prudencio, J. Rohovec, J. A. Peters, E. Tocheva, M. J. Boulanger, M. E. Murphy, H. J. Hupkes, W. Kosters, A. Impagliazzo, and M. Ubbink, Chemistry 10, 3252 (2004) https://doi.org/10.1002/chem.200306019
- F. Rodriguez-Castaneda, P. Haberz, A. Leonov, and C. Griesinger, Magn. Reson. Chem. 44, S10 (2006) https://doi.org/10.1002/mrc.1811
- T. Saio, K. Ogura, M. Yokochi, Y. Kobashigawa, and F. Inagaki, J. Biomol. NMR 44, 157 (2009) https://doi.org/10.1007/s10858-009-9325-z
- K. Furuita, S. Kataoka, T. Sugiki, Y. Hattori, N. Kobayashi, T. Ikegami, K. Shiozaki, T. Fujiwara, and C. Kojima, J. Biomol. NMR 61, 55 (2015) https://doi.org/10.1007/s10858-014-9882-7
- M. Ikura, G. M. Clore, A. Gronenborn, G. Zhu, C. Klee, and A. Bax, Science 256, 632 (1992) https://doi.org/10.1126/science.1585175
- N. Silvaggi, L. Martin, H. Schwalbe, B. Imperiali, and K. Allen, J. Am. Chem. Soc. 129, 7114 (2007) https://doi.org/10.1021/ja070481n
- P. Keizers, A. Saragliadis, Y. Hiruma, M. Overhand, and M. Ubbink, J. Am. Chem. Soc. 130, 14802 (2008) https://doi.org/10.1021/ja8054832
- N. Tjandra and A. Bax, Science 278, 1111 (1997) https://doi.org/10.1126/science.278.5340.1111
- M. Fischer, J. Losonczi, J. Weaver, and J. Prestegard, Biochemistry 38, 9013 (1999) https://doi.org/10.1021/bi9905213
- A. Bax and N. Tjandra, J. Biomol. NMR 10, 289 (1997) https://doi.org/10.1023/A:1018308717741
- M. Ruckert and G. Otting, J. Am. Chem. Soc. 122, 7793 (2000) https://doi.org/10.1021/ja001068h
- M. R. Hansen, L. Mueller, and A. Pardi, Nat. Struct. Biol. 5, 1065 (1998) https://doi.org/10.1038/4176
- M. Zweckstetter and A. Bax, J. Biomol. NMR 20, 365 (2001) https://doi.org/10.1023/A:1011263920003
- J. Chou, S. Gaemers, B. Howder, J. Louis, and A. Bax, J. Biomol. NMR 21, 377 (2001) https://doi.org/10.1023/A:1013336502594
- M. Ottiger and A. Bax, J. Biomol. NMR 12, 361 (1998) https://doi.org/10.1023/A:1008366116644
- M. Ottiger and A. Bax, J. Biomol. NMR 13, 187 (1999) https://doi.org/10.1023/A:1008395916985
- M. Ottiger, F. Delaglio, and A. Bax, J. Magn. Reson. 131, 373 (1998) https://doi.org/10.1006/jmre.1998.1361
- M. Ottiger, F. Delaglio, J. Marquardt, N. Tjandra, and A. Bax, J. Magn. Reson. 134, 365 (1998) https://doi.org/10.1006/jmre.1998.1546
- M. Zweckstetter, Nat. Protoc. 3, 679 (2008) https://doi.org/10.1038/nprot.2008.36
- E. Schmidt and P. Guntert, J. Am. Chem. Soc. 134, 12817 (2012) https://doi.org/10.1021/ja305091n
- C. Schmidt, S. Irausquin, and H. Valafar, BMC Bioinformatics 14 (2013)
- A. Bax, G. Kontaxis, and N. Tjandra, N, Nucl. Magn. Reson. Biol. Macromol. Pt B 339, 127 (2001)
- M. O'Connell, R. Gamsjaeger, and J. Mackay, Proteomics 9, 5224 (2009) https://doi.org/10.1002/pmic.200900303
- P. Bolon, H. Al-Hashimi, and J. Prestegard, J. Mol. Biol. 293, 107 (1999) https://doi.org/10.1006/jmbi.1999.3133