• 제목/요약/키워드: Binder treatment

검색결과 196건 처리시간 0.12초

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구 (Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application)

  • 김진원;류영현
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.974-981
    • /
    • 2019
  • 미세먼지발생 문제는 커다란 사회적 문제로 대두되고 있다. 선박에서는 주 추진 동력원으로 디젤엔진을 주로 사용하고 있다. 본 연구에서는 디젤엔진에서 발생하는 미세먼지로 알려진 입자상 물질을 줄이기 위해서 디젤엔진의 후처리시스템으로 사용 중인 DPF(디젤미립자 필터, Diesel particulate filter)를 소개하고자 한다. DPF의 소재로는 Cordierite와 SiC (Silicon carbide)의 두 가지가 사용되고 있다. 본 논문에서는 SiC DPF에 사용되는 접합제의 물성 향상을 위해서 기존 접합제로 사용된 SiC 계열의 물질 대신 코디얼라이트를 사용하여 열팽창계수 변화를 통한 고온 변형에 대한 열 내구성을 평가하였으며, 접합제와 Segment 사이의 결합을 결정짓는 바탕제에 주성분인 실리카졸의 pH 변화에 따른 물성 변화를 확인하였다. 이를 기반으로 실리카 졸의 반응성을 높이기 위해 Siline계 커플링제를 첨가하거나 SiC를 일부 첨가함으로써 접합제의 물성 변화의 영향에 대해서 실험을 통하여 확인하였다.

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries

  • Cho, Hyunwoo;Kim, Kyungsu;Park, Cheol-Min;Jeong, Goojin
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.131-138
    • /
    • 2019
  • To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.

TiO2 나노 입자를 이용한 상온건조용 항균 코팅 (Formation of Antibacterial Film dried at Room Temperature using nano-sized TiO2 Particle)

  • 최영진;김동규;김인수
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.401-409
    • /
    • 2010
  • This study was performed to develop an antibacterial film that can be dried at room temperature. A nanosized TiO$_2$ particle-dispersed solution was prepared by the hydrothermal treatment of peroxo-titanic acid at 160${^{\circ}C}$ for 4h. The binder was synthesized through the hydrolysis and condensation reactions of TEOS (10cc) and GPTS (3.5cc) in the mixture of H$_2$O (30cc) and EtOH (30cc). The synthesized binder was mixed with 0.1 M of TiO$_2$ solution in a volume ratio of binder/TiO$_2$ solution=0.25~0.5. The glass substrate was coated after using the dip coating method, which was then followed by drying for over 2h at room temperature. Although the TiO$_2$ particles did not chemically-bond to the binder, the coating layer strongly adhered to the substrate and displayed good antibacterial properties.

사형 주조 3D 프린팅용 소재의 기계적 특성 및 신뢰성 (Mechanical Properties and Reliability of Sand Casting 3D Printing Materials)

  • 손현진;장성완;이환종;양정직;정영근;배창준
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.38-43
    • /
    • 2020
  • Sand casting 3D printing uses a binder jetting method to produce a mold having complicated shape by spraying a binder on sand coated with activator. Appropriate heat treatment process in sand mold fabrication can increase the degree of polymerization to improve flexural strength. However, long heat treatment of over 24 hours decreases flexural strength and reliability due to chemical bond decomposition through thermal degradation. The main role of the activator is to control the reaction rate between the polymer chains. As a result, when the activator composition is increased from 0.15 wt% to 0.25 wt%, the flexural strength is increased by 218 N/㎠. However, excess activator (0.40 wt%) has been shown to decrease reliability without increasing flexural strength. The main role of the binder is to control the flexural strength of the specimen. As the binder composition is increased from 2.00 wt% to 4.00 wt%, the flexural strength increases to about 255 N/㎠, indicating the maximum flexural strength increase. Finally, the reliability of the flexural strength of the fabricated specimens is evaluated by a Weibull plot. Weibull modulus calculations are used to evaluate the flexural strength reliability of the specimens, and maximum reliability value of 11.7 is obtained at 0.20 wt% activator composition. Therefore, it is confirmed that this composition has maximum flexural strength reliability.

Preparation of Colour Filter Photo Resists for Improving Colour Purity in Liquid Crystal Displays by Synthesis of Polymeric Binder and Treatment of Pigments

  • Yoon, Chun;Choi, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1821-1826
    • /
    • 2009
  • Liquid crystal display (LCD) devices contain a colour filter which can visualise colour images by transmitting or absorbing light. Colour properties of LCD mainly depend on colour materials such as pigments and polymeric binders. In this paper, colour properties were studied to improve colour quality of LCD. Generally, the colour properties can be classified into three categories which are colour purity, brightness and contrast ratio. For this study, photo resists were prepared by treatment of pigments and synthesis of polymeric binder. The treated pigments were dispersed and formulated with additives for preparing a photo resist that could be used for manufacturing colour filters. As a result of what we studied, type, mixture ratio and concentration of pigments were very important to improve colour purity of LCD device.

방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리 (Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material)

  • 서은덕
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

잔대 종자 펠렛처리가 종자 발아에 미치는 영향 (Effect of Pelleting Treatment on Seed Germination in Adenophora triphylla)

  • 임동현;남주희;김종혁;이민주;노일래
    • 한국약용작물학회지
    • /
    • 제28권2호
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Sowing seeds of Adenophora triphylla is known to be difficult owing to their small size and irregular seed shape. Therefore, this study was conducted to develop a seed pelleting technique to save labor during sowing. Methods and Results: To identify the optimal germination temperature for A. triphylla seeds, the temperature range was set from 17℃ to 32℃. Germination surveys were conducted in plastic greenhouse conditions in March, April, and May to determine the appropriate sowing time. The optimal germination temperature for A. triphylla seeds was 29℃ and May was the optimal sowing time in plastic greenhouse conditions. Covering materials for seed pelleting used talc (T), kaolin (K), calcium carbonate (C), and vermiculite (V). The pellet binder used agar (A), pectin, xanthan gum, polyvinyl alcohol (PVA), and sodium alginate (S). The best suited treatment mixture were the best suited in kaolin / calcium carbonate / vermiculite (KCV), talc / calcium carbonate / vermiculite (TCV) mixture treatment for covering material, and sodium alginate (S), agar (A) as pellet binder, respectively. The germination rate was the best in TCV mixed with S. Conclusion: The mixture of TCV (2 : 1 : 3) + 1.5% S (TCVS), was found to be the best pelleting materials for A. triphylla seeds, and seed pelleting can be labor-saving during sowing.

Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향 (Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores)

  • 조은경;조현정;권훈태;조은민;류혁현;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

열전지용 FeS2 박막전극의 전기화학적 특성 (Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries)

  • 임채남
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).