• Title/Summary/Keyword: Binary Depth Image

검색결과 21건 처리시간 0.026초

3차원 Depth Image 추출용 Differential CORDIC 기반 고속 위상 연산기의 FPGA 구현 (FPGA Implementation of Differential CORDIC-based high-speed phase calculator for 3D Depth Image Extraction)

  • 구정윤;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.350-353
    • /
    • 2013
  • 본 논문에서는 TOF(Time-Of-Flight) 센서에 의해 얻어진 정보로부터 3차원 깊이 영상(depth image)을 추출하기 위한 위상 연산기의 하드웨어 구현을 제안한다. 설계된 위상 연산기는 DCORDIC(Differential COordinate Rotation DIgital Computer) 알고리듬의 vectoring mode를 이용하여 Arctangent 연산을 수행하며, 처리량과 속도를 늘리기 위해 redundant binary 수체계와 pipelined 구조를 적용하였다. 제안된 알고리듬은 고정 소수점 MATLAB 시뮬레이션을 통해 검증하고 최적 데이터 비트 수 및 반복 횟수를 결정하였다. 설계된 위상 연산기는 MATLAB/Simulink와 FPGA 연동을 통해 가상의 3차원 데이터 복원 동작을 검증하였으며, 469 MHz의 클록 주파수로 동작하여 7.5 Gbps의 성능을 갖는 것으로 평가되었다.

  • PDF

깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법 (Face Recognition Method Based on Local Binary Pattern using Depth Images)

  • 권순각;김흥준;이동석
    • 한국산업정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.39-45
    • /
    • 2017
  • 기존의 색상기반 얼굴인식 방법은 조명변화에 민감하며, 위변조의 가능성이 있기 때문에 다양한 산업분야에 적용되기 어려운 문제가 있었다. 본 논문에서는 이러한 문제를 해결하기 위해 깊이 영상을 이용한 지역 이진 패턴(LBP) 기반의 얼굴인식 방법을 제안한다. 깊이 정보를 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하고, 모의실험 결과를 바탕으로 제안된 방식의 인식 성능을 나타낸다.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성 (Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas)

  • 김보형;이철희
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.199-210
    • /
    • 1998
  • 본 논문에서는 전산화된 인체 해부도의 필수 기능인 3차원 볼륨 가시화 기법을 제시한다. 오브젝트순서에 기반한 광선 추적과 런-길이 인코딩의 장점을 이용한 이진 볼륨 렌더링 기법은 경계 추출된 칼라 슬라이스로 구성된 볼륨 데이터를 이용하여, 특정 하드웨어의 도움없이 일반 PC에서 대화식 수준의 속도로 3차원 가시화를 수행한다. 이 방법은 이진 볼륨 렌더링을 위해 필요한 이진 깊이 화상의 구성을 간소화하고 새루운 법선 벡터 계산 방법을 적용하여 렌더링 시간의 향상을 꾀하였다. 이와 함께 화질의 손실 없이 관련 데이터의 양을 줄이는 3D경계 인코딩 방법도 제시한다. 본 논문에서 제시한 렌더링 방법의 대화식 수준의 속도와 인코딩 방법의 정보 저장면에서의 효율성은 PC에서 운용될 수 있는 의학 해부도 응용 프로그램의 개발을 보다 가속화할 것이다.

  • PDF

Best Combination of Binarization Methods for License Plate Character Segmentation

  • Yoon, Youngwoo;Ban, Kyu-Dae;Yoon, Hosub;Lee, Jaeyeon;Kim, Jaehong
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.491-500
    • /
    • 2013
  • A connected component analysis from a binary image is a popular character segmentation method but occasionally fails to segment the characters owing to image noise and uneven illumination. A multimethod binarization scheme that incorporates two or more binary images is a novel solution, but selection of binarization methods has never been analyzed before. This paper reveals the best combination of binarization methods and parameters and presents an in-depth analysis of the multimethod binarization scheme for better character segmentation. We carry out an extensive quantitative evaluation, which shows a significant improvement over conventional single-method binarization methods. Experiment results of six binarization methods and their combinations with different test images are presented.

적외선과 깊이 영상을 이용한 얼굴 인식 방법 (Face Recognition Method by Using Infrared and Depth Images)

  • 이동석;한대현;권순각
    • 한국산업정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.1-9
    • /
    • 2018
  • 본 논문은 조명변화에 민감하지 않고, 사진에 대한 오인식을 방지하기 위한 얼굴인식 방법을 제안한다. 제안한 방법은 적외선과 깊이 영상을 동시에 이용하며, 적외선 영상으로 조명변화의 민감성을 해결하고, 깊이 영상으로 사진과 같은 2차원 영상에 대한 오인식을 방지한다. 적외선과 깊이 영상을 동시에 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하였으며, 모의실험을 통하여 기존 방법에 비해 얼굴인식의 정확도가 증가함을 보인다.

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

TOF 센서용 3차원 깊이 영상 추출을 위한 차동 CORDIC 기반 고속 위상 연산기 (Differential CORDIC-based High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor)

  • 구정윤;신경욱
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.643-650
    • /
    • 2014
  • TOF(Time-Of-Flight) 센서에 의해 획득된 정보로부터 3차원 깊이 영상(depth image)을 추출하기 위한 위상 연산기 하드웨어를 구현한다. 설계된 위상 연산기는 DCORDIC(Differential COordinate Rotation DIgital Computer) 알고리듬의 벡터링 모드를 이용하여 아크탄젠트 연산을 수행하며, 처리량과 속도를 늘리기 위해 잉여 이진 수체계와 파이프라인 구조를 적용하였다. 고정 소수점 MATLAB 시뮬레이션을 통해 검증하고 최적 데이터 비트 수 및 반복 횟수를 결정하였으며, MATLAB/Simulink와 FPGA 연동을 통해 하드웨어 동작을 검증하였다. TSMC $0.18-{\mu}m$ CMOS 공정으로 테스트 칩을 제작하였으며, 테스트 결과 정상 동작함을 확인하였다. 약 82,000 게이트로 구현되었고, 400MHz@1.8V로 동작하여 400 MS/s의 연산 성능을 갖는 것으로 평가되었다.

깊이영상에서 실시간 얼굴 검출을 위한 I-MCTBoost (The I-MCTBoost Classifier for Real-time Face Detection in Depth Image)

  • 주성일;원선희;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.25-35
    • /
    • 2014
  • 본 논문에서는 실시간 얼굴 검출을 위한 부스팅 기반 분류 방법을 제안한다. 제안하는 방법에서는 조명과 얼굴크기 및 변형에 강건하게 얼굴을 검출하기 위해 깊이영상을 이용하고, 깊이차이특징을 사용하여 I-MCTBoost 분류기를 통해 학습 및 인식을 수행한다. I-MCTBoost는 약분류기로 구성된 강분류기들의 연결을 통해 인식을 수행한다. 약분류기의 학습 과정은 깊이차이특징을 생성하고, 이중에서 8개의 특징을 조합하여 약분류기를 구성하며 이때 각 특징은 2진비트(binary bit)로 표현된다. 강분류기는 정해진 약분류기의 개수만큼 반복적으로 약분류기를 선택하는 과정을 통해 학습이 이루어지며, 학습 과정에서 학습 샘플의 가중치를 갱신하고 학습 데이터를 추가하여 강건한 분류를 수행할 수 있도록 한다. 본 논문에서는 깊이차이특징에 대해 설명하고 이를 이용한 I-MCTBoost의 약분류기 학습 방법과 강분류기 학습 방법에 대해 제안한다. 마지막으로 제안된 분류기를 기존 MCT를 이용한 분류기와 정성적, 정량적 분석을 통해 비교하고 제안한 분류기의 타당성과 효율성을 입증한다.