• Title/Summary/Keyword: Big6 Model

Search Result 314, Processing Time 0.03 seconds

A Study on the Promotion of Yakseon Food Using Big Data

  • LEE, JINHO;KIM, AE SOOK;Hwang, Chi-Gon;Ryu, Gi Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.41-46
    • /
    • 2022
  • The purpose of this study is to confirm and analyze the impact on consumers through big data keyword analysis on weak food. For data collection, web documents, blogs, news, cafes, intellectuals, academic information, and Google Web, news, and Facebook provided by Naver and Daum were used as analysis targets. The data analysis period was set from January 2018 to December 2021. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analyzed and visualized using the Netdraw function among UCINET6 programs. In addition, CONCOR analysis was conducted to derive clusters for similar keywords. As a result of analyzing yakseon food with keywords, a total of 35,985 cases of collected data were derived. Through this, it was confirmed that medicinal food affects consumers. Furthermore, if a business model is created and developed through yakseon food, it will be possible to lead the popularization of yakseon food.

Predictive of Osteoporosis by Tree-based Machine Learning Model in Post-menopause Woman (폐경 여성에서 트리기반 머신러닝 모델로부터 골다공증 예측)

  • Lee, In-Ja;Lee, Junho
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.495-502
    • /
    • 2020
  • In this study, the prevalence of osteoporosis was predicted based on 10 independent variables such as age, weight, and alcohol consumption and 4 tree-based machine-learning models, and the performance of each model was compared. Also the model with the highest performance was used to check the performance by clearing the independent variable, and Area Under Curve(ACU) was utilized to evaluate the performance of the model. The ACU for each model was Decision tree 0.663, Random forest 0.704, GBM 0.702, and XGBoost 0.710 and the importance of the variable was shown in the order of age, weight, and family history. As a result of using XGBoost, the highest performance model and clearing independent variables, the ACU shows the best performance of 0.750 with 7 independent variables. This data suggests that this method be applied to predict osteoporosis, but also other various diseases. In addition, it is expected to be used as basic data for big data research in the health care field.

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF

A Study on the Continuity of 'One Book, One City' Reading Campaign in the U.S.A. (미국의 '한 책, 한 도시' 독서운동의 지속성에 관한 연구)

  • Yoon, Cheong-Ok
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.3
    • /
    • pp.5-27
    • /
    • 2013
  • The purpose of this study is to examine the characteristics and continuity of 'One Book, One City' community reading campaign in the U.S.A. An analysis of 584 'One Book' projects registered in the Library of Congress, the Center for the Books shows that this innovative model of reading campaign has been diffused through three stages: the beginning(1998-2001), the growth (2002-2006), and the second take-off(2007-present). The stability of more than fifty 'One Book' projects was confirmed and the continuing diffusion of 'One Book' model through 'The Big Read' Initiative and some projects' attempt to try new directions seem worth observing.

[Reivew]Prediction of Cervical Cancer Risk from Taking Hormone Contraceptivese

  • Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2024
  • In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.

Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining (텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립)

  • Oh, Chang-Seok;Lee, Yong-taeck;Ko, Minsu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.10-23
    • /
    • 2016
  • With requiring circumspections using big data, this study attempts to develop and apply the search method for audit issues relating to the ITS policy or program. For the foregoing, the auditing process of the board of audit and inspection was converged with the theoretical frame of boundary analysis proposed by William Dunn as an analysis tool for audit issues. Moreover, we apply the text mining technique in order to computerize the analysis tool, which is similar to the boundary analysis in the concept of approaching meta-problems. For the text mining analysis, specific model we applied the antisymmetry-symmetry compound lexeme-based LDA model based on the Latent Dirichlet Allocation(LDA) methodologies proposed by David Blei. The several prime issues were founded through a case analysis as follows: lack of collection of traffic information by the urban traffic information system, which is operated by the National Police Agency, the overlapping problems between the Ministry of Land, Infrastructure and Transport and the Advanced Traffic Management System and fabrication of the mileage on digital tachograph.

A Study of Risk Analysis Model on Web Software (웹 소프트웨어의 위험분석 모델에 관한 연구)

  • Kim, Jee-Hyun;Oh, Sung-Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.281-289
    • /
    • 2006
  • Even though software developing environment has been changing to Web basis very fast, there are just few studies of quality metric or estimation model for Web software. In this study after analyzing the correlation between the risk level and property of objects using linear regression, six middle sized industrial system has been used to propose the correlation model of size and Number of Classes(NOC), size and Number of Methods(NOM), complexity and NOC, and complexity and NOM. Among of six systems 5 systems(except S06) have high correlation between size(LOC) and NOM, and four systems(except S04 & S06) have high correlation between complexity and NOC / NOM. As Web software architecture with three sides of Server, Client and HTML, complexity of each sides has been compared, two system(S04, S06) has big differences of each sides compleity values and one system(S06) has very higher complexity value of HTML, So the risk level could be estimated through NOM to improve maintenance in case of that the system has no big differences of each sides complexity.

  • PDF

Ontology Development of School Bullying for Social Big Data Collection and Analysis (소셜빅데이터 수집 및 분석을 위한 아동청소년 학교폭력 온톨로지 개발)

  • Han, Yoonsun;Kim, Hayoung;Song, Juyoung;Song, Tae Min
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.10-23
    • /
    • 2019
  • Although social big data can provide a multi-faceted perspective on school bullying experiences among children and adolescents, the complexity and variety of unstructured text presents a challenge for systematic collection and analysis of the data. Development of an ontology, which identifies key terms and their intricate relationships, is crucial for extracting key concepts and effectively collecting data. The current study elaborated on the definition of an ontology, carefully described the 7 stage development process, and applied the ontology for collecting and analyzing school bullying social big data. As a result, approximately 2,400 key terms were extracted in top-, middle-, and lower-level categories, concerning domains of participants, causes, types, location, region, and intervention. The study contributes to the literature by explaining the ontology development process and proposing a novel alternative research model that uses social big data in school bullying research. Findings from this ontology study may provide a basis for social big data research. Practical implications of this study lie in not only helping to understand the experience of school bullying participants, but also in offering a macro perspective on school bullying as a social phenomenon.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.

Study on the Viewers' Perception of Investigative Journalism Before and After Pandemic Using Big Data (빅데이터를 활용한 팬데믹 전후 탐사보도프로그램에 대한 시청자 인식연구)

  • Kyunghee Kim;Soonchul Kwon;Seunghyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.311-320
    • /
    • 2023
  • This paper analyzes viewers' perception of investigative journalism before and after COVID-19, and examines the direction of investigative journalism using big data. Based on the previous research set as a social science model, the relationship between words related to big data TV current affairs programs and investigative journalism in this paper was investigated before and after the appearance of COVID-19. We visualized changes in viewers' perception of investigative journalism by analyzing text data obtained through the use of Textom, with TV current affairs programs and investigative journalism as keywords. Data was collected from 2017 to June 2022 and refined for analysis. We visualized connectivity centrality using Ucinet 6.0 and Netdraw, and clustered the number of keywords and their frequency using Concor analysis. Our study found a clear change in viewer perception before and after the pandemic. As an implication of this thesis, big data analysis was conducted with the investigative journalism as the main keyword, and the direction of the investigative journalism was presented based on the analysis. Furthermore, based on previous research, we suggest effective approaches for investigative journalism after the pandemic to better engage viewers.