Journal of the Korean Data and Information Science Society
/
제27권3호
/
pp.609-619
/
2016
본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.
Recently, services provided to consumers are increasingly being combined with big data such as low-priced shopping, customized advertisement, and product recommendation. With the increasing importance of big data, the web crawler that collects data from the web has also become important. However, there are two problems with existing web crawlers. First, if the URL is hidden from the link, it can not be accessed by the URL. The second is the inefficiency of fetching more data than the user wants. Therefore, in this paper, through the Casper.js which can control the DOM in the headless brwoser, DOM event is generated by accessing the URL to the hidden link. We also propose an intelligent web crawler system that allows users to make steps to fine-tune both Structured and unstructured data to bring only the data they want. Finally, we show the superiority of the proposed crawler system through the performance evaluation results of the existing web crawler and the proposed web crawler.
본 논문에서는 미국, 영국, 일본, 중국, 한국의 비식별화 정책비교를 통하여 향후 비식별화 규제의 방향과 빅데이터 산업 활성화 방안을 제시한다. 비식별화 기술과 적정성 평가기준을 효율적으로 활용할 경우, 개인의 사생활을 침해하지 않고 개인정보보호법 제약을 피하면서 개인정보를 산업적으로 활용하여 서비스와 기술을 발전시킬 수 있다. 역작용으로는 비식별화 된 데이터들의 집합체로서 개인을 재식별 할 수 있는 재식별화 문제가 발생할 수 있다. 비즈니스 관점에서는 빅데이터 산업이 활성화되기 위해서 규제의 해소와 빅데이터 활용 등을 위한 제도완화가 필요하며 정보보호 측면에서의 보안강화 조치와 제도정비도 필요하다.
본 연구에서는 그동안 해외에서 주로 실행되어 왔던 빅데이터를 이용한 다양한 질병(독감, 폐렴, 수족구병) 환자수 예측 모델을 개발해 보았다. 기존의 환자수 예측이 병원에서 실제 환자수를 카운팅한 수를 수집하여 발표하는 시스템이라면, 이번에 개발한 연구 모델은 실시간으로 제공되는 질병 관련 단어 및 다양한 기후 데이터를 접목하여 기계학습 방법으로 알고리즘을 만들고, 이를 기반으로 정부에서 발표하기 전 환자수를 예측하는 모델이다. 특히 유행성 질병이 빠르게 확산될 경우, 실시간으로 전파 속도를 파악할 수 있다는 점에서 그 장점이 있다. 이를 위하여 구글 플루 트렌드에서 실패한 부분을 최대한 보완하여 다양한 데이터를 활용한 예측 모델을 개발하였다.
최근 경험데이터에 대한 중요성이 커지면서 데이터사이언스적 관점으로 경험데이터를 다루려는 시도가 많아지고 있다. 빅데이터와 같은 수치적으로 계량화하려는 정량(quantitative)적 조사 방식의 수집방식으로 접근하는 경우에 경험이 가지고 있는 가치에 대한 폭넓은 해석이 어려울 뿐 아니라 비용, 시간이 상대적으로 많이 들고, 개인정보 침해의 위험으로 분석에 한계가 있다. 하지만, 정성(qualitative)적 조사 기반의 경험데이터 수집 절차인 에스노그라피(ethnograpy)는 사용자라는 관점에서 미래 고객의 자연스러운 실제 환경에서 주로 실시되기 때문에 적은 표본으로도 고객이 직면한 본질을 확인할 수 있고, 경험데이터가 가지고 있는 맥락적 차원의 관계를 해석하기에도 용이하다. 에스노그라피 방식의 경험데이터 수집이 경제적이고, 효율적이라고 하여도 데이터의 수집 과정에 대한 과학적 절차의 미흡은 문제가 될 수 있기에, 수집과정의 오차를 줄이는 것은 중요하다. 에스노그라피 방식의 경험데이터 수집에 대한 올바른 측정 도구를 사용했느냐에 대한 타당성 확보와 측정대상을 정확하게 선정하여 타당성 있는 측정 도구와 방법을 사용했느냐의 신뢰성 확보가 중요하다. 이러한 관점에서 에스노그라피 방식의 경험데이터 수집에 대한 올바른 측정 방법과 도구개발을 위해 타당성을 확보하고 측정대상을 명확하게 선별하는 연구방법의 신뢰성을 검증할 필요가 있다. 이에 본 연구에서는 에스노그라피 방식의 경험데이터 수집에 기반하여 자영업자의 고객경험을 분석해주는 'I know you_AI' 서비스의 데이터와 방법론 사례를 중심으로 이에 대한 검증 연구를 진행하였고, 연구 결과 신뢰성과 타당성이 있음을 확인하였다.
사물인터넷(IoT) 서비스는 스마트 환경이 발전하면서 다양한 데이터를 생산하고 있다. 이 데이터는 사용자의 상황을 판단하는 중요한 데이터로 사용된다. 그렇기 때문에 센서의 이상 상태를 실시간으로 모니터링하고 이상 데이터를 탐지하는 것이 중요하다. 하지만 데이터 구조와 프로토콜이 다양하기 때문에 표준화된 데이터 구조로 변환하는 과정이 필요하다. 그럼으로써 데이터의 품질을 보장하고 정확한 분석을 통해 서비스의 품질까지 좋아지는 효과를 기대할 수 있다. 본 논문은 수집된 센서의 이상탐지를 위해 빅데이터 기반의 이상탐지 시스템을 제안한다. 제안한 시스템은 이상탐지를 위해 데이터 표준화 전처리와 시계열 기반의 이상탐지가 우수한 SVM(Support Vector Machine) 모델을 적용하였다. 실험에서는 전처리와 전처리되지 않은 데이터를 각각 학습시키고 비교하였다. 그 결과, 전처리된 데이터는 이상 장애를 정확히 탐지하고 예측하였다.
International Journal of Internet, Broadcasting and Communication
/
제13권4호
/
pp.66-71
/
2021
The purpose of this paper is to identify keywords related to museums, gamification, and visitors, and provide basic data that the museum market can be expanded by using gamification. That used to collect data for blogs, news, cafes, intellectuals, academic information by Naver and Daum which is Web documents in Korea, and Google Web, news, Facebook, Baidu, YouTube, and Twitter for analysis. For the data analysis period, a total of one year of data was selected from April 16, 2020 to April 16, 2021, after Corona. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analysed and visualized using the Netdraw function in the UCINET6 program. In addition, We performed CONCOR analysis to derive clusters for similar keywords. As a result, a total of 25,761 cases that analysing the keywords of museum, gamification and visitors were derived. This shows that the museum, gamification, and spectators are related to each other. Furthermore, if a system using gamification is developed for museums, the museum market can be developed.
International journal of advanced smart convergence
/
제12권4호
/
pp.353-360
/
2023
This paper explores notable shifts in the restaurant startup market following the lifting of social distancing measures. Key trends identified include an escalated interest in startups, a heightened focus on the quality and diversity of food, a relative decline in the importance of delivery services, and a growing interest in specific industry sectors. The study's data collection spanned three years, from April 2021 to May 2023, encompassing the period before and after social distancing. Data were sourced from a range of online platforms, including blogs, news sites, cafes, web documents, and intellectual forums, provided by Naver, Daum, and Google. From this collected data, the top 50 words were identified through a refinement process. The analysis was structured around the social distancing application period, comparing data from April 2021 to April 2022 with data from May 2022 to May 2023. These observed trend changes provide founders with valuable insights to seize new market opportunities and formulate effective startup strategies. In summary, We offer crucial insights for founders, enabling them to comprehend the evolving dynamics in food service startups and to adapt their strategies to the current market environment.
International journal of advanced smart convergence
/
제13권2호
/
pp.166-171
/
2024
Recently, there has been an increasing trend in the role of social media in tourism marketing. We analyze changes in tourism marketing trends using tourism marketing keywords through social media networks. The aim is to understand marketing trends based on the analyzed data and effectively create, maintain, and manage customers, as well as efficiently supply tourism products. Data was collected using web data from platforms such as Naver, Google, and Daum through TexTom. The data collection period was set for one year, from December 1, 2022, to December 1, 2023. The collected data, after undergoing refinement, was analyzed as keyword networks based on frequency analysis results. Network visualization and CONCOR analysis were conducted using the Ucinet program. The top words in frequency were 'tourists,' 'promotion,' 'travel,' and 'research.' Clusters were categorized into four: tourism field, tourism products, marketing, and motivation for visits. Through this, it was confirmed that tourism marketing is being conducted in various tourism sectors such as MICE, medical tourism, and conventions. Utilizing digital marketing via online platforms, tourism products are promoted to tourists, and unique tourism products are developed to increase city branding and tourism demand through integrated tourism content. We identify trends in tourism marketing, providing tourists with a positive image and contributing to the activation of local tourism.
연구 데이터 관리(Research Data Management: RDM)는 연구데이터를 생산, 수집, 이용, 보전하는데 있어 방향을 제시하고 지원하는 인력, 정책, 자원 및 기술을 포괄하는 시스템이다. RDM은 연구비 신청시 작성하는 DMP(Data Management Plan)의 작성지원, 데이터 컬렉션과 리파지토리 구축, 연구 데이터의 디지털 보전과 유통 등을 포함하는 광범위한 활동들로 구성된다. 선진국의 경우 각 기관들이 RDM을 위한 시스템과 관련 조직을 구성하여 운영하고 있으나 우리나라의 경우에는 연구 데이터에 관한 인식수준이 낮아 미흡한 실정이다. 본 논문에서는 각 조직의 현실에 적합한 연구데이터 관리체계 구축방안을 제안한다. 특히, 최근들어 각 분야마다, 조직마다 빅데이터의 생성과 관리를 위한 빅데이터 플랫폼 구축이 급증하고 있어 이를 조직내 RDM 구축에 반영할 필요가 있다. 또한 블록체인 기술을 활용하여 연구자의 데이터 주권 확보를 지원하고, 데이터 프로비넌스 보장과 P2P 방식의 분산 RDM 구축 방안도 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.