• Title/Summary/Keyword: Big data analysis system

Search Result 1,040, Processing Time 0.031 seconds

Optimizing Employment and Learning System Using Big Data and Knowledge Management Based on Deduction Graph

  • Vishkaei, Behzad Maleki;Mahdavi, Iraj;Mahdavi-Amiri, Nezam;Askari, Masoud
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.3
    • /
    • pp.13-23
    • /
    • 2016
  • In recent years, big data has usefully been deployed by organizations with the aim of getting a better prediction for the future. Moreover, knowledge management systems are being used by organizations to identify and create knowledge. Here, the output from analysis of big data and a knowledge management system are used to develop a new model with the goal of minimizing the cost of implementing new recognized processes including staff training, transferring and employment costs. Strategies are proposed from big data analysis and new processes are defined accordingly. The company requires various skills to execute the proposed processes. Organization's current experts and their skills are known through a pre-established knowledge management system. After a gap analysis, managers can make decisions about the expert arrangement, training programs and employment to bridge the gap and accomplish their goals. Finally, deduction graph is used to analyze the model.

MapReduce-Based Partitioner Big Data Analysis Scheme for Processing Rate of Log Analysis (로그 분석 처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법)

  • Lee, Hyeopgeon;Kim, Young-Woon;Park, Jiyong;Lee, Jin-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.593-600
    • /
    • 2018
  • Owing to the advancement of Internet and smart devices, access to various media such as social media became easy; thus, a large amount of big data is being produced. Particularly, the companies that provide various Internet services are analyzing the big data by using the MapReduce-based big data analysis techniques to investigate the customer preferences and patterns and strengthen the security. However, with MapReduce, when the big data is analyzed by defining the number of reducer objects generated in the reduce stage as one, the processing rate of big data analysis decreases. Therefore, in this paper, a MapReduce-based split big data analysis method is proposed to improve the log analysis processing rate. The proposed method separates the reducer partitioning stage and the analysis result combining stage and improves the big data processing rate by decreasing the bottleneck phenomenon by generating the number of reducer objects dynamically.

Role of Big Data Technology and Whistleblowing System in Distribution of Fraud Detection

  • Idrawahyuni;Gagaring PAGALUNG;Darwis SAID;Grace T. PONTOH
    • Journal of Distribution Science
    • /
    • v.22 no.9
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The purpose of the research is to find out and analyze the direct influence of forensic audits and auditor integrity on Fraud Detection and indirect effects through big data technology and whistleblowing systems in Indonesian BPK. The research method used is a survey research method. Surveys are primary data collection methods by asking 254 individual respondents. The unit of analysis is an individual, namely the BPK RI auditors. Results of this study found a forensic audit has a positive and significant effect on fraud detection, Auditor Integrity has a positive and significant effect on Fraud Detection; and forensic Audit has a positive and significant effect on big data technology, A forensic Audit has a positive and significant effect on the whistleblowing system, Integrity auditor has a positive and significant effect on big data technology, The whistleblowing system has a positive and significant effect on fraud detection, Big data technology has a positive and significant effect on fraud detection, The whistleblowing system has a positive and significant effect on fraud detection. Similar to how we used cross-sectional data, future research is urged to use an interview-based qualitative approach to avoid typical technique bias.

Developing a Big Data Analysis Platform for Small and Medium-Sized Enterprises

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.65-72
    • /
    • 2020
  • Big data analysis is widely used in applications such as finance and communication, whose market size is growing rapidly every year. Nevertheless, it is rarely used by SMEs (small and medium-sized enterprises) since the existing services are not fully customized for them while being offered at high price. To resolve this, we develop and propose a new platform to provide big data analysis services specialized for SMEs in this paper. First, we compare existing work discussing social big data analysis, and extract service features necessary to help their marketing effectively. Then, we present a prototype system implementing the extracted features, and discuss technical issues needed to develop a complete system which are obtained from the prototype implementation.

Marketability analysis and commercialization methodology analysis system using big dataof Digital Policy & Management (빅데이터를 활용한 시장분석 및 사업화방법론 분석시스템)

  • Yong-Ho Kim;Hyung-Beom Park
    • Journal of Digital Convergence
    • /
    • v.21 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • This study is about a marketability analysis and commercialization methodology analysis system using big data, and a marketability analysis and commercialization methodology analysis system that can analyze the marketability of the product based on a content channel capable of viral marketing. The marketability analysis and commercialization methodology analysis system using big data according to this study analyzes the marketability of the products to be analyzed by analyzing the marketing content provided on the content channel, so it has the advantage of determining more accurate viral marketing effects on the products to be analyzed.

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals (빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템)

  • Kim, Tae Woong
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The data analysis system using Big-data is worthy to be used in various fields such as politics, traffic, natural disaster, shopping, customer management, medical care, and weather information. Particularly, the analysis of the momentum of an individual using an acceleration signal collected from a wearable device has already been widely used. However, since the data used in such a system stores only the data necessary for measuring the individual activity, it does not provide various analysis results other than the exercise amount of the individual. In this paper, I propose a system that analyzes collective behavior pattern and activity based on the acceleration signal that can be collected from personal smartphones for 24 hours a day and stored in big data. I also propose a system that sends acceleration signals and receives analysis results using standard messaging to use on various smart devices.

Development of an Intelligent Control System to Integrate Computer Vision Technology and Big Data of Safety Accidents in Korea

  • KANG, Sung Won;PARK, Sung Yong;SHIN, Jae Kwon;YOO, Wi Sung;SHIN, Yoonseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.721-727
    • /
    • 2022
  • Construction safety remains an ongoing concern, and project managers have been increasingly forced to cope with myriad uncertainties related to human operations on construction sites and the lack of a skilled workforce in hazardous circumstances. Various construction fatality monitoring systems have been widely proposed as alternatives to overcome these difficulties and to improve safety management performance. In this study, we propose an intelligent, automatic control system that can proactively protect workers using both the analysis of big data of past safety accidents, as well as the real-time detection of worker non-compliance in using personal protective equipment (PPE) on a construction site. These data are obtained using computer vision technology and data analytics, which are integrated and reinforced by lessons learned from the analysis of big data of safety accidents that occurred in the last 10 years. The system offers data-informed recommendations for high-risk workers, and proactively eliminates the possibility of safety accidents. As an illustrative case, we selected a pilot project and applied the proposed system to workers in uncontrolled environments. Decreases in workers PPE non-compliance rates, improvements in variable compliance rates, reductions in severe fatalities through guidelines that are customized according to the worker, and accelerations in safety performance achievements are expected.

  • PDF

A Study on Construction of Platform Using Spectrum Big Data (전파 빅데이터 활용을 위한 플랫폼 구축방안 연구)

  • Kim, Hyoung Ju;Ra, Jong Hei;Jeon, Woong Ryul;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2020
  • This paper proposes a platform construction plan for the use of spectrum big data, collects and analyzes the big data in the radio wave field, establishes a linkage plan, and presents a support system scheme for linking and using the spectrum and public sector big data. It presented a plan to build a big data platform in connection with the spectrum public sector. In a situation where there is a lack of a support system for systematic analysis and utilization of big data in the field of radio waves, by establishing a platform construction plan for the use of big data by radio-related industries, the preemptive response to realize the 4th Industrial Revolution and the status and state of the domestic radio field. The company intends to contribute to enhancing the convenience of users of the big data platform in the public sector by securing the innovation growth engine of the company and contributing to the fair competition of the radio wave industry and the improvement of service quality. In addition, it intends to contribute to raising the social awareness of the value of spectrum management data utilization and establishing a collaboration system that uses spectrum big data through joint use of the platform.

A Study on the Crime Prevention Smart System Based on Big Data Processing (빅데이터 처리 기반의 범죄 예방 스마트 시스템에 관한 연구)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.75-80
    • /
    • 2020
  • Since the Fourth Industrial Revolution, important technologies such as big data analysis, robotics, Internet of Things, and the artificial intelligence have been used in various fields. Generally speaking it is understood that the big-data technology consists of gathering stage for enormous data, analyzing and processing stage and distributing stage. Until now crime records which is one of useful big-sized data are utilized to obtain investigation information after occurring crimes. If crime records are utilized to predict crimes it is believed that crime occurring frequency can be lowered by processing big-sized crime records in big-data framework. In this research the design is proposed that the smart system can provide the users of smart devices crime occurrence probability by processing crime records in big-data analysis. Specifically it is meant that the proposed system will guide safer routes by displaying crime occurrence probabilities on the digital map in a smart device. In the experiment result for a smart application dealing with small local area it is showed that its usefulness is quite good in crime prevention.