KIPS Transactions on Computer and Communication Systems
/
v.3
no.10
/
pp.377-382
/
2014
Analysis techniques of the data over time from the mobile environment and IoT, is mainly used for extracting patterns from the collected data, to find meaningful information. However, analytical methods existing, is based to be analyzed in a state where the data collection is complete, to reflect changes in time series data associated with the passage of time is difficult. In this paper, we introduce a method for analyzing multi-block streaming data(AM-MBSD: Analysis Method for Multi-Block Stream Data) for the analysis of the data stream with multiple properties, such as variability of pattern and large capacitive and continuity of data. The multi-block streaming data, define a plurality of blocks of data to be continuously generated, each block, by using the analysis method of the proposed method of analysis to extract meaningful patterns. The patterns that are extracted, generation time, frequency, were collected and consideration of such errors. Through analysis experiments using time series data.
With the development of ICT, as the era of the 4th industrial revolution arrives, the amount of data is enormous, and as big data technologies emerge, technologies for processing, storing, and processing data are becoming important. In this paper, we propose a system that detects events through monitoring and judges them using hash values because the damage to important files in case of leakage in industries and public places is serious nationally and property. As a research method, an optional event method is used to compare the hash value registered in advance after performing the encryption operation in the event of a file leakage, and then determine whether it is an important file. Monitoring of specific events minimizes system load, analyzes the signature, and determines it to improve accuracy. Confidentiality is improved by comparing and determining hash values pre-registered in the database. For future research, research on security solutions to prevent file leakage through networks and various paths is needed.
Recently, with the development of network technologies, as IoT and social network service applications have been actively used, a lot of graph stream data is being generated. In this paper, we propose a graph compression scheme that considers the stream graph environment by applying graph mining to the existing compression technique, which has been focused on compression rate and runtime. In this paper, we proposed Incremental frequent pattern based compression technique for graph streams. Since the proposed scheme keeps only the latest reference patterns, it increases the storage utilization and improves the query processing time. In order to show the superiority of the proposed scheme, various performance evaluations are performed in terms of compression rate and processing time compared to the existing method. The proposed scheme is faster than existing similar scheme when the number of duplicated data is large.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.459-461
/
2022
One of the big differences between Network-on-Chip (NoC) and the existing parallel processing system based on an off-chip network is that data packet routing is performed using a centralized control scheme. In such an environment, the best-effort packet routing problem becomes a real-time assignment problem in which data packet arriving time and processing time is the cost. In this paper, the Hungarian algorithm, a representative computational complexity reduction algorithm for the linear algebraic equation of the allocation problem, is implemented in the form of a hardware accelerator. As a result of logic synthesis using the TSMC 0.18um standard cell library, the area of the circuit designed through case analysis for the cost distribution is reduced by about 16% and the propagation delay of it is reduced by about 52%, compared to the circuit implementing the original operation sequence of the Hungarian algorithm.
Chun-Won Jang;Young-Soo Kang;Seung-Min Lee;Jun-Mo Park
Journal of the Institute of Convergence Signal Processing
/
v.25
no.1
/
pp.15-20
/
2024
In the field of ship inspection in South Korea, due to outdated workflow processes, there is a possibility of tampering with inspection results. Accordingly, research is being conducted to prevent tampering with inspection results by introducing blockchain technology and cloud-based systems that allow real-time tracking and sharing of data, and to establish a transparent and efficient communication system. In this study, unit and integrated processes for overall data management and inspection execution related to ship inspection were implemented to automatically collect, manage, and track various inspection results occurring during the ship inspection process. Through this, it aimed to increase the efficiency of the ship inspection process overall, inducing growth in the ship inspection industry as a whole. The implemented web portal reached a level where trend analysis and comparative analysis with other ships based on inspection results are possible, and subsequent research aims to demonstrate the excellence of the system.
Recently, GPGPU has been widely used for general-purpose processing as well as graphics processing by providing optimized hardware for parallel processing. Memory system has big effects on the performance of parallel processing units such as GPU. In the GPU, hierarchical memory architecture is implemented for high memory bandwidth. Moreover, both memory address coalescing and memory request merging techniques are widely used. This paper analyzes the GPU performance according to various memory organizations. According to our simulation results, GPU performance improves by 15.5%, 21.5%, 25.5%, 30.9% as adding 8KB L1, 16KB L1, 32KB L1, 64KB L1 cache, respectively, compared to case without L1 cache. However, experimental results show that some benchmarks decrease performance since memory transaction increases due to data dependency. Moreover, average memory access latency is increased as the depth of hierarchical cache level increases when cache miss occurs significantly.
Journal of the Korean Society for information Management
/
v.35
no.1
/
pp.157-182
/
2018
As data management and processing techniques have been developed rapidly in the era of big data, nowadays a lot of business companies and researchers have been interested in long tail data which were ignored in the past. This study proposes methods for generating and controlling a network of technical terms based on text mining technique to enhance data utilization in the distribution of long tail theory. Especially, an edit distance technique of text mining has given us efficient methods to automatically create an interlinking network of technical terms in the scholarly field. We have also used linked open data system to gather experimental data to improve data utilization and proposed effective methods to use data of LOD systems and algorithm to recognize patterns of terms. Finally, the performance evaluation test of the network of technical terms has shown that the proposed methods were useful to enhance the rate of data utilization.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.3
/
pp.2158-2164
/
2015
In u-GIS environments, various load shedding techniques have been researched in order to balance loads caused by input spatial data streams. However, typical load shedding methods on aspatial data lack regard for characteristics of spatial data, also previous load shedding approaches on spatial, which still lack regard for spatial data density or dynamic input data stream, give rise to troubles on spatial query processing performance and accuracy. Therefore, dynamic load shedding scheme over spatial data stream is proposed through stored spatial data deviation and load ratio of input data stream in order to improve spatial continuous query accuracy and performance in u-GIS environment. In proposed scheme, input data which are a big probability related to spatial continuous query may be a strong chance to be dropped relatively.
Recently, agricultural sites are automating into digital agricultural smart farms by applying technologies such as big data and Internet of Things (IoT). These smart farms aim to increase production and improve crop quality by measuring the environment of crops, investigating and processing data. Production prediction is an important study in smart farm digital agriculture, which is a high-tech agriculture, and it is necessary to analyze environmental data using big data and further standardized research to manage the quality of growth information data. In this paper, environmental and production data collected from smart farm strawberry farms were analyzed and studied. Based on regression analysis, crop production prediction models were analyzed using Ridge Regression, LightGBM, and XGBoost. Among the three models, the optimal model was XGBoost, and R2 showed 82.5 percent explanatory power. As a result of the study, the correlation between the amount of positive fluid absorption and environmental data was confirmed, and significant results were obtained for the production prediction study. In the future, it is expected to contribute to the prevention of environmental pollution and reduction of sheep through the management of sheep by studying the amount of sheep absorption, such as information on the growing environment of crops and the ingredients of sheep.
KIPS Transactions on Computer and Communication Systems
/
v.5
no.8
/
pp.181-188
/
2016
Recently, as the amount of spatial information increases, an interest in the study of spatial information processing has been increased. Spatial database systems extended from the traditional relational database systems are difficult to handle large data sets because of the scalability. SpatialHadoop extended from Hadoop system has a low performance, because spatial computations in SpationHadoop require a lot of write operations of intermediate results to the disk, resulting in the performance degradation. In this paper, Spatial Computation Spark(SC-Spark) is proposed, which is an in-memory based distributed processing framework. SC-Spark is extended from Spark in order to efficiently perform the spatial operation for large-scale data. In addition, SC-Spark based on the GPGPU is developed to improve the performance of the SC-Spark. SC-Spark uses the advantage of the Spark holding intermediate results in the memory. And GPGPU-based SC-Spark can perform spatial operations in parallel using a plurality of processing elements of an GPU. To verify the proposed work, experiments on a single AMD system were performed using SC-Spark and GPGPU-based SC-Spark for Point-in-Polygon and spatial join operation. The experimental results showed that the performance of SC-Spark and GPGPU-based SC-Spark were up-to 8 times faster than SpatialHadoop.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.