IT산업의 새로운 패러다임으로 빅데이터 분석이 주요한 기술로 부각되고 있다. 본 논문에서는 빅데이터를 수집, 분석하여 이를 통해 피자 판매량을 예측하는 모델을 제안한다. 판매량 예측을 위하여 과거 판매 데이터와 함께 공휴일, 날씨, 뉴스기사, 경제지표, 트렌드, 스포츠 이벤트 등의 데이터를 수집하여 이용하였으며, 판매량 예측 방법으로는 회기분석과 인공신경망 학습 등을 사용하여 빅데이터를 사용하지 않은 경우와 정확도를 비교하였다. 실험 결과 빅데이터를 이용함으로써 예측 오차율이 5%이상 향상됨을 확인하였다.
Kim, Seung Ju;Yoon, Chang Geun;Lee, Cha Hun;Park, Dong Hwan;Lee, Hae Jun;Park, Hyeok Ju;Lee, Yong Kyu
Annual Conference of KIPS
/
2018.10a
/
pp.17-20
/
2018
대중의 관심인 공공이슈를 파악하기 위하여 다양한 종류의 빅데이터를 분석하는 연구가 진행되고 있다. 그러나 기존의 연구에서는 키워드의 노출 횟수만 파악하여 결과로 반영한다. 본 논문은 포털 사이트로부터 얻은 언론사별 뉴스 빅데이터를 이용하여 키워드별 노출 빈도수, 댓글 수 및 추천 수를 반영한 분석 방법을 제안하였다. 공공이슈를 추출하여 얻어낸 키워드들을 워드클라우드, Sankey다이어그램과 같은 형태로 시각화하여 사용자에게 제공한다. 제안된 방법을 사용하면 대중의 반응을 반영한 분석 결과를 확인 할 수 있다.
Kim, Ji-Eon;Kim, Seung-Jin;No, Si-Hyeong;Jeong, Chang-Won;Kim, Tae-Hoon;Jun, Hong-Yong;Yu, Tae-Yang;Yoon, Kwon-Ha
Annual Conference of KIPS
/
2018.05a
/
pp.236-237
/
2018
최근 생활습관정보는 대사증후군을 진단하기 위한 임상적 진단지표로 중요하게 활용되고 있다. 대사증후군은 심혈관 및 간질환 그리고 당뇨와 같은 여러 합병증을 유발할 수 있는 질환으로 질환 정도에 따른 체계적 관리가 필요하다. 그러나 대사증후군 환자의 생활습관을 수집하기 위한 대부분의 시스템은 자가진단 및 예방 중심의 시스템으로 구성되어 있어 정확한 생활습관을 수집하여 생활습관을 관리하기에는 어려움이 있다. 본 논문에서 제안하는 시스템은 임상적 진단지표에 도움이 될 수 있도록 신뢰성 있는 생활습관 정보를 수집하기 위한 방법을 제시하고 수집된 생활습관정보를 모니터링 하여 환자의 생활습관 개선 여부에 따라 지속적인 피드백을 제공하여 체계적으로 생활습관을 관리할 수 있는 시스템을 제안하고자 한다.
Kim, Seung-Jin;Jeong, Chang-Won;Kim, Tae-Hoon;Lee, Chung-Sub;No, Si-Hyeong;Kim, Ji-Eon;Lee, Go-eun;Yoon, Kwon-Ha
Annual Conference of KIPS
/
2019.10a
/
pp.38-39
/
2019
본 논문은 R-CDM 의료영상정보를 기반으로 ELK Stack 기술을 적용하여 획득한 데이터의 분석 결과를 시각화하기 위한 시스템에 대해 기술한다. 제안한 시스템은 의료 빅데이터의 검색, 수집 그리고 분석 결과를 모니터링 할 수 있으며, 특히 대량의 데이터의 변화와 데이터간의 차이를 확인할 수 있다. 본 연구에서 제안한 시스템은 수집된 의료영상 빅데이터에 대해 적용하여 현황과 처리결과 그리고 실시간 분석결과에 대한 모니터링을 통해 관리의 효율성을 높여 실시간 검색 및 분석 서비스 분야에 기여할 것으로 기대된다.
최근 현대인들은 식습관이 불규칙하고 서구화되면서, 건강상의 많은 문제를 겪고 있다. 이와 더불어 1인 가구의 증가와 간단한 구매 방법 등으로 인해 온라인 몰 사용자가 늘어나고 있다. 본 프로젝트는 이러한 추세를 바탕으로, 사용자가 자주 사용하는 온라인 몰에 축적된 데이터를 기반으로 사용자의 식습관을 분석한다. 뿐만 아니라, 이를 바탕으로 구매 패턴을 분석하여 사용자의 영양 상태를 개선시킬 수 있는 상품 추천 서비스를 제공한다. 사용자는 자주 사용하는 온라인 쇼핑몰에서 상품 구매를 함과 동시에 구매한 상품에 대해 시각화된 영양소 분석 결과와 구매 패턴 분석 결과를 제공받을 수 있다. 본 논문에서는 개발한 API를 통해 사용자는 부족한 영양소를 쉽게 파악하여 효율적으로 건강관리를 할 수 있게 된다. 더 나아가, 자신의 구매 패턴을 파악할 수 있게 되어 현명한 소비 습관을 만드는 데에 기여할 수 있다.
대한민국 인구의 고령화는 점점 더 심화되며 노인 환자의 수도 증가하는 추세이다. 노인환자들은 의약품 부작용 위험도가 높기 때문에 노인에게 부적절한 약물과 처방 이후의 부작용 발생 현황에 대한 통계적인 분석이 필요하다고 판단하였다. 의약품 부작용관련 문헌 정보와 실제 병원의 전자 의무 기록을 이용해 데이터 베이스를 구축하고 Python 을 사용해 부작용 탐지 알고리즘을 설계했다. 노인 환자가 특정 약품을 투약한 이후에 그 약품에 부작용에 해당하는 진단을 받는다면 부작용이 발생한 것으로 판단한다. 알고리즘을 기반으로 사용자들이 쉽게 접근할 수 있도록 웹을 구축했다. d3.js 를 통해 직관적으로 부작용 확률을 확인할 수 있도록 구현했고 새로운 진단 또는 처방을 입력하여 실시간으로 확률에 반영하였다. 실시간으로 데이터를 확인할 수 있기 때문에 부작용 이슈에 신속하게 예방 및 대응이 가능할 것으로 기대된다.
Enterprise networks in the PyeongChang Winter Olympics were hacked in February 2018. According to a domestic security company's analysis report, attackers destroyed approximately 300 hosts with the aim of interfering with the Olympics. Enterprise have no choice but to rely on digital vaccines since it is overwhelming to analyze all programs executed in the host used by ordinary users. However, traditional vaccines cannot protect the host against variant or new malware because they cannot detect intrusions without signatures for malwares. To overcome this limitation of signature-based detection, there has been much research conducted on the behavior analysis of malwares. However, since most of them rely on a sandbox where only analysis target program is running, we cannot detect malwares intruding the host where many normal programs are running. Therefore, this study proposes a method to detect malware variants in the host through logs rather than the sandbox. The proposed method extracts common behaviors from variants group and finds characteristic behaviors optimized for querying. Through experimentation on 1,584,363 logs, generated by executing 6,430 malware samples, we prove that there exist the common behaviors that variants share and we demonstrate that these behaviors can be used to detect variants.
Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
Journal of Information Processing Systems
/
v.17
no.1
/
pp.151-162
/
2021
Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.
Plant disease is one of the most irritating problems for agriculture growers. Thus, timely detection of plant diseases is of high importance to practical value, and corresponding measures can be taken at the early stage of plant diseases. Therefore, numerous researchers have made unremitting efforts in plant disease identification. However, this problem was not solved effectively until the development of artificial intelligence and big data technologies, especially the wide application of deep learning models in different fields. Since the symptoms of plant diseases mainly appear visually on leaves, computer vision and machine learning technologies are effective and rapid methods for identifying various kinds of plant diseases. As one of the fruits with the highest nutritional value, apple production directly affects the quality of life, and it is important to prevent disease intrusion in advance for yield and taste. In this study, an improved deep residual network is proposed for apple leaf disease identification in a novel way, a global residual connection is added to the original residual network, and the local residual connection architecture is optimized. Including that 1,977 apple leaf disease images with three categories that are collected in this study, experimental results show that the proposed method has achieved 98.74% top-1 accuracy on the test set, outperforming the existing state-of-the-art models in apple leaf disease identification tasks, and proving the effectiveness of the proposed method.
Response surface methodology (RSM) is a statistical approach widely used in food processing to optimize the formulation, processing conditions, and quality of food products. The homogenization process is achieved by subjecting milk to high pressure, which breaks down fat globules and disperses fat more evenly throughout milk. This study focuses on an application of RSM including the logit transformation to predict the efficiency of milk homogenization, which can be maximized by minimizing the relative difference in fat percentage between the top part and the remainder of milk. To avoid a negative predicted value of the minimum of this proportion, the logit transformation is used to turn the proportion into the logit, whose possible values are real numbers. Then, the logit values are modeled and optimized. Subsequently, the logistic transformation is used to turn the predicted logit into the predicted proportion. From our model, the optimum condition for the maximized efficiency of milk homogenization was predicted as the combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 10 days. Additionally, with a combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 50 days, the level of milk homogenization was predicted to be acceptable, even with the problem of extrapolation taken into account.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.