Journal of the Korea Society of Computer and Information
/
v.26
no.3
/
pp.29-34
/
2021
With the advent of the 4th industrial revolution era, IT technology is creating new services that have not existed by converging with various existing industries and fields. In particular, in the field of artificial intelligence, chatbots and the latest technologies have developed dramatically with the development of natural language processing technology, and various business processes are processed through chatbots. This study is a study on a system that provides a close answer to the question the user wants to find by creating a structural form for legal inquiries through Slot Filling-based chatbot technology, and inputting a predetermined type of question. Using the proposal system, it is possible to construct question-and-answer data in a more structured form of legal information, which is unstructured data in text form. In addition, by managing the accumulated Q&A data through a big data storage system such as Apache Hive and recycling the data for learning, the reliability of the response can be expected to continuously improve.
Distributed computing helps to efficiently store and process large data on a cluster of multiple machines. The performance of distributed computing is greatly influenced depending on the state of the servers constituting the distributed system. In this paper, we propose a self-diagnosis system that collects log data in a distributed system, detects anomalies and visualizes the results in real time. First, we divide the self-diagnosis process into five stages: collecting, delivering, analyzing, storing, and visualizing stages. Next, we design a real-time self-diagnosis system that meets the goals of real-time, scalability, and high availability. The proposed system is based on Apache Flume, Apache Kafka, and Apache Storm, which are representative real-time distributed techniques. In addition, we use simple but effective moving average and 3-sigma based anomaly detection technique to minimize the delay of log data processing during the self-diagnosis process. Through the results of this paper, we can construct a distributed real-time self-diagnosis solution that can diagnose server status in real time in a complicated distributed system.
KIPS Transactions on Computer and Communication Systems
/
v.7
no.1
/
pp.9-18
/
2018
Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.
Seo, Jung-Yeon;Jeon, Eun-Kwang;Chae, Min-su;Lee, Hwa-Min
Annual Conference of KIPS
/
2017.04a
/
pp.854-856
/
2017
최근 들어 모바일 디바이스의 발전으로 인해 생성되는 데이터의 종류는 다양해지고, 양은 방대해지고 있다. 이렇게 생성된 방대한 양의 데이터를 빅데이터라고 한다. 빅데이터들은 기존의 데이터 처리 방법과 다른 방법으로 처리되어야한다. 빅데이터 처리의 대표적인 방법인 관계형데이터베이스시스템(RDBMS)와 NoSQL 방법 중 대표적인 방법인 MySQL과 MongoDB의 데이터를 모델링한다. 설계된 데이터를 바탕으로 보다 편하고 알맞게 데이터베이스시스템 성능평가를 수행한다.
The development of ICT brings the change in daily life and the digitized data are increasing in usage. The combination between GPS and internet results in extensive diffusion of space related information by way of smartphone, sensor and SNS. Jeju Island is only one special self-governing province in Republic of Korea and deserves to be proud of the unique culture, having those designated Intangible Cultural Heritage from UNESCO such as Culture of Jeju Haenyeo or Women Divers and Jeju Chilmeoridang Yeongdeunggut or Exorcism of Praying big Catch. In this paper, I suggest how to preserve fadable tradition economically and technically and expect to develop Haenyeo fitted portable sensors and IoT platform.
적절한 주택공급 및 주택정책을 위해서는 인구 및 가구 구조의 변화에 따른 주택수요의 예측의 정확성이 요구되고 있다. 본 연구에서는 기존 주택수요 예측에 있어서의 DB의 문제점들을 살펴보고 개선방안 및 빅데이터를 활용할 수 있는 DB 구축방안을 제시하였다. 향후, 기존에 활용되지 않고 있는 주택공시가격, 건축물대장, 가계동향조사, 인구주택 총조사 등을 활용하여 주택수요를 분석할 수 있도록 파일럿시스템을 개발하여 타당성을 검토할 예정이다.
수전 설비 시스템은 전력 회사에서 3 상 전원을 받는 설비로, 전기를 공급받기 위한 설비이다. 정전이나 제품생산설비의 중단은 기업에 있어서는 경제적 손실이 매우 큰 사고일 수 밖에 없다. 요즘은 IoT 센서를 이용한 수전설비 관리 시스템의 활용이 늘어나고 있는 추세이다. IoT 센서를 이용한 수전 설비의 구축에서 정확한 상태 값의 센싱과 수집된 값의 전송, 그리고 정확성 판단에 대한 이슈들이 고려되어야 하며, 또한 기기간 통신을 통해 실시간 상호작용으로 수전설비의 고장을 어떻게 예방할 것인가에 대한 것이 중요하다. 본 연구에서는 수전 설비의 실시간 감지와 모니터링을 위한 목적으로 기존의 고장 및 오류 정보를 기반으로 하는 빅데이터 분석을 통해 발생 가능한 고장 및 오류를 사전 예측할 수 있도록 정보를 제공하는 것에 주안점을 두었다.
Lee, Gi-Taek;Jun, Hong Young;Kim, Tae-Hoon;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
Annual Conference of KIPS
/
2017.04a
/
pp.982-983
/
2017
본 연구는 최근 문제가 되고 있는 비알콜성 간 질환에 대한 빅 데이터의 사전 데이터를 만들기 위해 마우스에서 고지방 식이와 Streptozotocin ((STZ)로 모델을 제작하였고, 당뇨와 비만 정도를 측정하여 질환발생 정도를 확인하였다. 또한, MR영상의 지속적인 촬용으로 질환발생과정에 대해 3D분석 소프트웨어로 평가되었다.
무선 센터 네트워크 환경과 이동성을 지원하는 MANET이 결합된 환경에서 센서 커버리지 최대화 문제는 해결해야 할 중요한 문제 중 하나이다. 이 문제를 해결하기 위해 기존 연구에서는 자가 조직의 방식으로 노드 이동에 대하여 자가 결정, 근접 노드 검색, 노드 이동의 단계를 수행하는 알고리즘이 제시되었다. 하지만 기존 연구의 방식으로는 이미 노드의 배치가 최적화된 상태에서는 효과적이지 않다는 문제점을 가지고 있다. 이 논문에서는 기존 MANET 센서 커버리지 최대화 알고리즘의 문제점을 상세히 분석하고, 이 문제점을 해결하기 위한 해결 방안을 제시한다. 문제점을 제시하기 위해 MANET 환경을 모의구성하고 성능 실험을 실시하였다.
최근 빅데이터 산업이 발전하고 있는 상황에서 빅데이터 산업에 활용되는 개인정보의 보호에 관한 문제가 대두하고 있다. 빅데이터 산업에서 개인정보를 활용하기 위해서는 비식별화 조치를 해야 한다. 하지만 비식별화는 비식별화 평가 모델 자체의 취약성과 더불어 비식별화된 개인정보를 재식별화 하는 위험성도 존재한다. 본 논문은 적정성 평가 모델, 비식별화 조치 기술, 재식별에 관한 위험성을 연구하고 각 위험성에 대한 대응 방안을 통해 재식별화의 문제를 해결하여 빅데이터 산업에서 비식별화된 개인정보가 안전히 쓰일 수 있도록 해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.