Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.26
no.6
/
pp.549-559
/
2008
This study verified the limitations of commercial GPS data processing software and the applicability on precise positioning through comparing the processing results between Bernese and TGO under various conditions. To achieve the goal, we selected three nationwide station data and two smaller local data to constitute networks. By using Bernese and TGO, those networks are processed through the baseline analysis and the network adjustment. The comparative analysis was carried out, in terms of software, baseline length and network scale, observation duration, and number of fixed points. In the comparison between softwares, the scientific software was excellent in accuracy. It was confirmed that, as GPS-related technology is developed, the performance of the receiver was enhanced. And, in parallel with this, even the functionalities of the commercial software were tremendously enhanced. The difference, however, in result between the scientific and commercial software are still exist even if it is not big. Therefore, this study confirms that the scientific software should be used when the most precise position is necessary to be computed, especially if baseline vectors are big.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.4
/
pp.575-580
/
2018
This paper discusses system for real-time monitoring of patient waiting time in hospitals based on open-source platform. It is necessary to make use of open-source projects to develop a high-performance stream processing system, which analyzes and processes stream data in real time, with less cost. The Hadoop ecosystem is a well-known big data processing platform consisting of numerous open-source subprojects. This paper first defines several requirements for the monitoring system, and selects a few projects from the Hadoop ecosystem that are suited to meet the requirements. Then, the paper proposes system architecture and a detailed module design using Apache Spark, Apache Kafka, and so on. The proposed system can reduce development costs by using open-source projects and by acquiring data from legacy hospital information system. High-performance and fault-tolerance of the system can also be achieved through distributed processing.
With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.645-646
/
2018
Recently, the concept of machine learning has been introduced as a decision making method through data processing. Machine learning uses the results of running based on existing data as a means of decision making. The data generated by the development of technology is vast. This data is called big data. It is important to extract the necessary data from these data. In this paper, we propose a method for extracting related data for constructing an ontology through machine learning. The results of machine learning can be given a relationship from a semantic perspective. it can be added to the ontology to support relationships depending on the needs of the application.
KIPS Transactions on Software and Data Engineering
/
v.5
no.6
/
pp.283-288
/
2016
In recent years, there have been many research efforts on Big Data, and many companies developed a variety of relevant products. Accordingly, we are able to store and analyze a large volume of log data, which have been difficult to be handled in the traditional computing environment. To handle a large volume of log data, which rapidly occur in multiple servers, in this paper we design a new data storage architecture to efficiently analyze those big log data through Apache Hive. We then design and implement anomaly detection methods, which identify abnormal status of servers from log data, based on moving average and 3-sigma techniques. We also show effectiveness of the proposed detection methods by demonstrating that our methods identifies anomalies correctly. These results show that our anomaly detection is an excellent approach for properly detecting anomalies from Hadoop log data.
교육열이 강한 우리나라에서는 사교육은 언제나 뜨거운 감자이다. 교육대상 연령층의 인구수가 1990 년부터 빠르게 감소하기 시작했으며, 2005 년을 전후로 초등학생 수의 감소가 더욱 빨라지고 있다. 통계청 데이터에 따르면 2016 년 출생아 수는 40 만 6 천여명에서 2017 년은 35 만 7 천여명으로 향후에도 지속적으로 줄어들 추세이다. 이렇듯 매년 학생수가 감소함에도 불구하고 2018 년 사교육비 총액은 19 조 5 천억수준으로 2017 년 18 조 7 천억보다 8 천억원이 늘어 났다. 학생수는 전년보다 2.5% 줄었지만 사교육비는 반대로 4.4% 늘어났다. 이렇듯 사교육 시장이 심화 되게 되면 경쟁은 더욱 치열해 질 수 밖에 없으며 이 경쟁에서 살아 남기 위해서는 다양한 비즈니스 전략이 필요하며 특히 학생들의 이탈을 줄이는 것은 사업의 가장 중요한 포인트라고 볼 수 있을 것이다. 학원에서의 학생이 퇴원을 하는 이유에 대한 영향도를 분석하고 그 영향도 분석을 통해 학원 학생들의 퇴원 방지에 활용하고자 한다. 본 논문의 주요 연구 내용은 사교육을 대표하는 국내 사설 학원에서의 성적, 출결사항 및 학원 상담 내역 등의 다양한 학원 데이터들을 최적의 딥러닝 알고리즘 분석을 통한 퇴원 학생을 사전 예측하기 위한 논문임을 밝힌다.
As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.
The glut of information aggravated the process of data analysis and other procedures including data mining. Many algorithms were devised in Big Data and Data Mining to solve such an intricate problem. In this paper, we conducted research about the comparison of several similarity measures and community detection algorithms in collaborative filtering for movie recommendation systems. Movielense data set was used to do an empirical experiment. We applied three different similarity measures: Cosine, Euclidean, and Pearson. Moreover, betweenness and eigenvector centrality were used to detect communities from the network. As a result, we elucidated which algorithm is more suitable than its counterpart in terms of recommendation accuracy.
날씨에 대한 인류의 관심은 인류 역사가 시작되면서 지금까지 예측하며 관심 영역인 만큼 인류에게 끼치는 영향이 크다. 초기 인류에게 있어서 의류는 생존을 위한 생존 도구에서 현재는 패션의 영역으로 자기를 표출하거나 자신에게 가장 어울리는 옷을 찾기 위한 욕구로 발전해 왔다. 따라서 본 논문에서는 날씨에 따른 개인의 체감온도와 해당 날씨에 가장 선호하는 의상을 분석하고, 예측하며 추천해주는 시스템을 제안한다. 제안하는 시스템은 지속적인 유지 관리를 통해 보완해 나간다면 날씨와 패션 분야에서 다양한 접목을 하는 등 기술발전을 할 것으로 기대된다.
Cloud computing helps big data processing to make various information using IT resources. The government has to start the RPS(Renewable Portfolio Standard) and induce the production of electricity using renewable energy equipment. And the government manages system to gather big data that is distributed geographically. The companies can purchase the REC(Renewable Energy Certificate) to other electricity generation companies to fill shortage among their duty from the system. Because of the RPS use voluntary competitive market in REC trade and the prices have the large variation, RPS is necessary to predict the equitable REC price using RPS big data. This paper proposed REC price prediction method base on fuzzy logic using the price trend and trading condition infra in REC market, that is modeled in cloud computing environment. Cloud computing helps to analyze correlation and variables that act on REC price within RPS big data and the analysis can be predict REC price by simulation. Fuzzy logic presents balanced REC average trading prices using the trading quantity and price. The model presents REC average trading price using the trading quantity and price and the method helps induce well-converged price in the long run in cloud computing environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.