• Title/Summary/Keyword: Big data Processing

Search Result 1,063, Processing Time 0.03 seconds

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

Prototype Design for unmanned aerial vehicle-based BigData Processing (무인항공기 기반 빅데이터 처리 시스템의 프로토타입 설계)

  • Kim, Sa Woong
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • Recently, the unmanned aerial vehicle Drone technology is attracting new interest around the world. The versatilities in science, military, marketing, sports, and entertainment fields are the driving force of the drone fever. Thus, the potential power of future industrial is expected as the application range is extensive. In this paper, we design and propose the prototype of unmanned aerial vehicle-based bigdata processing system.

Feasibility Verification of Big Data Processing employing SmartX-mini Center with NUC Cluster (SmartX-mini Center를 통한 NUC 클러스터의 Big Data 처리 가능성 검증)

  • Song, Jiwon;Lee, Jungi;Kim, Seungryong;Kim, JongWon
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.73-74
    • /
    • 2015
  • IoT의 발달로 인해 새롭게 빅데이터와 그의 실시간 처리의 중요성이 증대되고 있다. 본 논문에서는 사물인터넷의 관제 및 데이터 처리 기능을 갖춘 SmartX-mini 센터를 통하여 NUC 클러스터의 빅데이터 처리 가능성을 제시하고, 이를 검증하기 위하여 SmartX-mini 테스트베드를 활용한다. SmartX-mini Center의 Spark 프레임워크를 이용한 실험을 통해 IoT 환경에서의 NUC 클러스터의 빅데이터 처리 가능에 대한 가능성을 검증하였다.

A Meta Analysis of the Edible Insects (식용곤충 연구 메타 분석)

  • Yu, Ok-Kyeong;Jin, Chan-Yong;Nam, Soo-Tai;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.182-183
    • /
    • 2018
  • Big data analysis is the process of discovering a meaningful correlation, pattern, and trends in large data set stored in existing data warehouse management tools and creating new values. In addition, by extracts new value from structured and unstructured data set in big volume means a technology to analyze the results. Most of the methods of Big data analysis technology are data mining, machine learning, natural language processing, pattern recognition, etc. used in existing statistical computer science. Global research institutes have identified Big data as the most notable new technology since 2011.

  • PDF

Design and Implementation of Input and Output System for Unstructured Big Data (비정형 대용량 데이터 입력 및 출력 시스템 설계 및 구현)

  • Kim, Chang-Su;Shim, Kyu-Chul;Kang, Byoung-Jun;Kim, Kyung-Hwan;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.387-393
    • /
    • 2014
  • In recent years, the spread of computers is increasing, and efficient processing effort for unstructured Big Data is required. In this paper, we are proposed a system to extract the data typed in a word processor quickly by user creating and XML mapping file after converting XML data that has been entered in the office file(HWP, MS-office). In addition, we proposed a system is able to lookup the necessary data from a database by entered form in advance and convert word processor document to office files by the application program. The unstructured big data will be available to be used.

Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis (키워드 기반 주제중심 분석을 이용한 비정형데이터 처리)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.521-526
    • /
    • 2017
  • Data format of Big data is diverse and vast, and its generation speed is very fast, requiring new management and analysis methods, not traditional data processing methods. Textual mining techniques can be used to extract useful information from unstructured text written in human language in online documents on social networks. Identifying trends in the message of politics, economy, and culture left behind in social media is a factor in understanding what topics they are interested in. In this study, text mining was performed on online news related to a given keyword using topic - oriented analysis technique. We use Latent Dirichiet Allocation (LDA) to extract information from web documents and analyze which subjects are interested in a given keyword, and which topics are related to which core values are related.

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.

A Study on the Use of Stopword Corpus for Cleansing Unstructured Text Data (비정형 텍스트 데이터 정제를 위한 불용어 코퍼스의 활용에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.891-897
    • /
    • 2022
  • In big data analysis, raw text data mostly exists in various unstructured data forms, so it becomes a structured data form that can be analyzed only after undergoing heuristic pre-processing and computer post-processing cleansing. Therefore, in this study, unnecessary elements are purified through pre-processing of the collected raw data in order to apply the wordcloud of R program, which is one of the text data analysis techniques, and stopwords are removed in the post-processing process. Then, a case study of wordcloud analysis was conducted, which calculates the frequency of occurrence of words and expresses words with high frequency as key issues. In this study, to improve the problems of the "nested stopword source code" method, which is the existing stopword processing method, using the word cloud technique of R, we propose the use of "general stopword corpus" and "user-defined stopword corpus" and conduct case analysis. The advantages and disadvantages of the proposed "unstructured data cleansing process model" are comparatively verified and presented, and the practical application of word cloud visualization analysis using the "proposed external corpus cleansing technique" is presented.

A Comparative Analysis of Cognitive Change about Big Data Using Social Media Data Analysis (소셜 미디어 데이터 분석을 활용한 빅데이터에 대한 인식 변화 비교 분석)

  • Yun, Youdong;Jo, Jaechoon;Hur, Yuna;Lim, Heuiseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.7
    • /
    • pp.371-378
    • /
    • 2017
  • Recently, with the spread of smart device and the introduction of web services, the data is rapidly increasing online, and it is utilized in various fields. In particular, the emergence of social media in the big data field has led to a rapid increase in the amount of unstructured data. In order to extract meaningful information from such unstructured data, interest in big data technology has increased in various fields. Big data is becoming a key resource in many areas. Big data's prospects for the future are positive, but concerns about data breaches and privacy are constantly being addressed. On this subject of big data, where positive and negative views coexist, the research of analyzing people's opinions currently lack. In this study, we compared the changes in peoples perception on big data based on unstructured data collected from the social media using a text mining. As a results, yearly keywords for domestic big data, declining positive opinions, and increasing negative opinions were observed. Based on these results, we could predict the flow of domestic big data.