• 제목/요약/키워드: Big Data Pattern Analysis

검색결과 172건 처리시간 0.032초

인간 단백질 분석을 위한 빅 데이타 기반 RMF 방법 (A Big Data Based Random Motif Frequency Method for Analyzing Human Proteins)

  • 김은미;정종철;이배호
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1397-1404
    • /
    • 2018
  • 입체적 단백질 구조를 이용한 단백질의 분석은 3차원 데이타를 생성하기 위한 기술적인 어려움과 요구되는 높은 비용으로 인해 크게 발전하지 못하였다. 모티프(motif)는 단백질이나 유전자 염기서열의 단편(segment) 정보로 정의된다. 단순성 때문에 모티프는 다양한 분야에서 활발하고 폭넓게 응용되고 있다. 그러나 모티프 자체에 대한 포괄적인 이해와 연구는 미미하다. 이 논문이 가지는 중요성은 인공지능 기법을 활용하여 인간 단백질을 분석하는 방법으로 3가지 측면에서 찾아볼 수 있다. (1) 현재 단백질 데이타 뱅크 (PDB)에 저장된 모든 인간의 단백질 구조를, 이에 상응하는 효소위원회 (EC)의 데이타베이스와 단백질의 구조적 특성에 따른 분류 데이타베이스 (SCOP)를 연동하여, 단백질이 가지는 고유의 특성을 모티프를 응용한 새로운 방법으로 컴퓨터를 이용하여, 분석한 최초의 종합적이고 심층적인 인간 단백질의 분석법이다. (2) 본 연구는 모티프에 의해 생성된 새로운 단백질의 특성을 계층적 클러스터링을 이용하여 단백질이 가지는 고유한 특징을 패턴 분석법과 통계 그리고 단백질 기능 분석의 세 가지 범주로 단백질의 특성을 분석한다. (3) 임의로 생성된 모티프가 단백질 내에서 가지는 빈도에 대해 빅 데이타를 활용하여 모티프의 길이를 다양화시킴과 동시에 접촉 염기와 단백질의 기능을 다각도로 분석할 수 있는 임의 모티프 빈도 (RMF)를 이용한 단백질 분석 방법론을 제안한다.

전철변전소 전력부하패턴 점검 프로그램 개발 및 요금최적화 (Developing electric railway load pattern inspection program and optimizing power rate)

  • 전용주;이기천;박기범;이태훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1163-1164
    • /
    • 2007
  • At present, one of the big characteristics in electric power market in korea is unique seller but in the near future competitions are expected in the market. so additional service for the electric power are expected. Also with development of IT technology, remote inspection for power usage are possible so as consumption pattern analysis. KORAIL is one of the biggest consumer in electric power market so it is necessary to investigate power consumption pattern. This paper presents electric power rate definition program based on billing system database and also basic power rate optimization method. Base on the substation annual power usage DB data, the characteristic of the substation power consumption are investigated and effective electrical billing system are compared each other. Through this program it is verified that we can save more then several hundred million won for a year.

  • PDF

스마트카드 빅데이터를 이용한 서울시 지하철 이동패턴 분석 (Discovery of Travel Patterns in Seoul Metropolitan Subway Using Big Data of Smart Card Transaction Systems)

  • 김관호;오규협;이영규;정재윤
    • 한국전자거래학회지
    • /
    • 제18권3호
    • /
    • pp.211-222
    • /
    • 2013
  • 지리적으로 인접되어 있으면서 이동관점에서 같은 역할을 수행하는 Zone의 파악은 사람들의 이동흐름을 이해하고 도시개발 및 이동편의성 개선 등을 위한 중요한 정보로 활용된다. 그러나 기존의 연구는 특정 지점간의 이동과 Zone 발견을 개별적으로 수행하여, 거시적 관점에서의 이동패턴을 이해하는 데에는 한계가 존재한다. 따라서 본 연구에서는 스마트카드 전자거래 빅데이터로부터 Zone들을 발견하고 동시에 Zone들 간의 관계를 설명하는 클러스터링 기반의 이동패턴 분석기법을 제안한다. 또한, 설명력과 종속성 관점에서 이동패턴을 정량적으로 평가하는 지표를 제안한다. 제안된 분석기법을 이용하여 서울시 지하철에서 수집된 실 데이터를 분석하여 서울시에서의 이동패턴을 밝혀내고 시각화하였다.

빅데이터 분석을 통한 중력식 항만시설 수정프로젝트 레벨의 상태변화 특성 분석 (A Study on Condition Analysis of Revised Project Level of Gravity Port facility using Big Data)

  • 나용현;박미연;장신우
    • 한국재난정보학회 논문집
    • /
    • 제17권2호
    • /
    • pp.254-265
    • /
    • 2021
  • 연구목적: 국내 항만시설의 진단을 통한 성능 및 안전에 대한 점검과 진단을 20년 넘게 진행되었지만 그 진단 이력과 결과를 활용한 중장기적인 시설개선과 성능개선을 위한 발전전략이나 방향이 현실적으로 작동하지 않고 있다. 특히, 사용년수가 오래된 항만구조물의 경우, 선박의 대형화와 사용빈도 증가, 기후변화로 인한 자연재해의 영향 등으로 안전성능과 기능적 면에서 상당히 많은 문제점을 내포하고 있다. 연구방법: 본 연구에서는 중력식 안벽에 대한 부재수준의 유지관리 이력 데이터를 수집하여 이를 빅데이터로써 정의하고 해당 데이터를 바탕으로 프로젝트 수준의 시설물의 노후화 패턴 및 열화를 추정하기 위한 예측근사모델을 도출하였다. 특히 GP 및 SGP 기법의 머신러닝 알고리즘을 통하여 생성된 상태기반 노후도 패턴 및 열화 근사모델에 대한 유효성 검토를 통해 빅데이터 활용에 적합한 모델을 상호비교하고 제안하였다. 연구결과: 제안된 기법의 적합성을 검토한 결과 GP기법은 RMSE 및 R2는 0.9854와 0.0721, SGP기법은 0.7246과 0.2518로 GP기법을 적용한 예측모델이 적합한 것으로 검토 되었다. 결론: 머신러닝 기법을 통해 이러한 연구는 향후 항만시설 데이터취합이 지속적으로 이루어진다면 향후 항만시설 투자의사결정에 중요한 역할을 할 것으로 기대한다.

빅데이터를 통한 2016년의 다이어트 실태 분석 (Analysis of dieting practices in 2016 using big data)

  • 정은진;장은재;조경애
    • 한국식품과학회지
    • /
    • 제51권2호
    • /
    • pp.176-181
    • /
    • 2019
  • 인터넷과 대중매체의 발전은 새로운 다이어트에 대한 사람들의 접근을 용이하게 만들었다. 그러나 사람들의 관심은 시시각각으로 변화하기 때문에 이슈가 되는 다이어트는 매년 달라지고 있다. 따라서 본 연구에서는 2016년의 다이어트에 대한 경향을 알아보고 분석하기 위해서 빅데이터 분석 방법을 이용하였고, 포털 사이트 네이버를 통해 2016년 1월 1일부터 2016년 12월 31일 까지 1년간 다이어트 키워드가 포함된 문장을 수집하고 분석하여 단순빈도 분석, N-gram 분석, 키워드 네트워크 분석, 계절성 분석을 시행하였다. 단순빈도분석을 통해 가장 많이 출현한 키워드는 '운동'으로(191,032개)나타났고, 그 다음으로 '식단'이(102,631개)로 나타났으며, 키워드 간의 연관빈도를 분석한 N-gram 분석결과 상위 결과로 다이어트-식단, 다이어트-시작, 다이어트-성공으로 나타났고, 다이어트-도시락이 새롭게 나타나 다이어트 시장의 새로운 변화를 확인할 수 있었다. 또한 다이어트 키워드와 연관된 키워드를 유사한 성격들끼리 그룹화한 키워드 네트워크 분석을 통해 식이그룹, 운동 그룹, 상업적 다이어트 식품, 상업적 다이어트 프로그램 그룹으로 총 4개의 그룹으로 세분화되었다. 계절성 분석을 통해 2월부터 7월까지 꾸준한 상승을 보였으나, 10월에 다이어트 출현빈도 수치가 급격히 상승하였고, 대중매체를 통해 소개된 고지방 다이어트의 월별 출현빈도도 10월에 급격한 상승이 있었다. 따라서 대중매체의 영향이나 새로운 다이어트의 유행이 사람들에게 큰 영향을 미치는 것을 확인할 수 있었다. 이상의 결과를 바탕으로 다이어트의 패턴은 1년을 기준으로 일정한 양상을 띠고 있으나, 새롭게 유행하는 다이어트의 출현을 통해 사람들의 관심이 변화하여 다이어트의 패턴에도 영향을 미치는 것을 확인하였다. 결국 시시각각 변화하는 다이어트를 빠르게 파악하기 위해서는 주기적이기 보다는 지속적인 모니터링과 분석이 필요하다고 판단되어진다.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

청소년 여학생(靑少年 女學生)과 성인 여성(成人 女性)의 브래지어 패턴 비교연구(比較硏究) (A Study on the Comparative Analysis of Brassiere Pattern between Girl Students and Adults)

  • 손희순;차수정
    • 패션비즈니스
    • /
    • 제10권4호
    • /
    • pp.95-113
    • /
    • 2006
  • This study was conducted comparative analysis of juvenile brassiere and adult brassiere to identify the problems of brassieres on the market. The raw data for this study was processed by SPSS 10.1 version(statistical software) and the results of this study can be summarized as follows. 1) The result of comparative analysis of juvenile brassiere and adult brassiere pattern is that each pattern showed no difference. 2) The results of the comparative analysis of juvenile and adult brassiere pattern in wing's length and angle is that even though there are some difference between juvenile and adult in side line inclination of brassiere. there is no setting difference but size of that brassiere. 3) The result of a comparative analysis pattern and cup size measurement of juvenile brassiere and adult brassiere is that even though the adult cup girth and angle is bigger than the juvenile because adults have more protrusive and bigger volume and well developed breast, some case rather the adult's cup angle is smaller than the juvenile as brand. And as we grow up to be a woman, difference of lower breast girth and breast girth are become big while difference of upper breast girth and breast girth are become small for that reason upper cup must be lower and lower cup must be higher but there is almost no difference between adult and juvenile. 4) The result of a comparative analysis of juvenile brassiere and adult brassiere bust point of the pattern is that adult brassiere's distance between bust points 6.12cm, and juvenile's 5.6cm, there are only 0.52cm difference between two products and just 0.4cm, size grading. These results are explained that even though when grow up to be a woman the distance between two bust points become to be long and breast toward out side but brassiere size don't vary with body characteristic.

교통카드데이터를 활용한 교통약자 대중교통 환승통행패턴 분석: 버스 지하철 간 환승을 중심으로 (Evaluation of Transit Transfer Pattern for the Mobility Handicapped Using Traffic Card Big Data: Focus on Transfer between Bus and Metro)

  • 권민영;김영찬;구지선
    • 한국ITS학회 논문지
    • /
    • 제20권2호
    • /
    • pp.58-71
    • /
    • 2021
  • 전 세계적으로 고령인구가 급증하고 이에 따라 이동에 불편을 겪는 교통약자의 수도 증가하고 있다. 이러한 추세에 따라 국내에서는 이동편의시설 설치 확대 등 교통약자에 대한 양질의 대중교통 서비스 제공을 위해 다양한 정책을 시행 중이다. 기존 대중교통 이동편의시설 설치는 역사의 면적, 층수, 시설 미확보역 등의 양적인 측면을 기준으로 우선적 확대·설치되고 있다. 하지만 양적 기준 보다는 실제 이용자 기준의 설치 필요 지역에 이동편의시설을 확보하는 것이 교통약자의 이동편의 증진에 더 효과적일 것으로 사료된다. 본 연구에서는 이용자 기반의 교통카드 빅데이터 분석을 통해 교통약자의 환승취약지점을 도출하고자 했다. 스마트카드 거래내역 데이터를 가공하여 환승통행데이터를 구축하고 이용자별 환승통행패턴 분석 및 환승통행시간 차이가 큰 경로를 기준으로 환승취약지점을 도출했다. 분석 결과 일반 이용자보다 교통약자의 환승시간이 오래 걸리는 것으로 나타났다. 일반과 교통약자의 환승통행시간 차이와 시설물 개수와의 상관관계는 미약한 것으로 나타났는데 현장 조사 결과 환승통행시간 차이는 시설물의 단순 개수보다는 해당 환승최단경로 내 이동편의시설의 부재로 인해 발생하는 것으로 나타났다. 향후 교통약자를 위한 이동편의시설 확대 시 실질적 이용자 기반 데이터 분석을 통한 환승취약지점을 기준으로 우선적 시설 확보 시 교통약자의 이동편의가 보다 더 향상될 것으로 사료된다.

공간 데이터마이닝 분석을 통한 데이터의 효과적인 활용 (Effective Utilization of Data based on Analysis of Spatial Data Mining)

  • 김기범;안병구
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.157-163
    • /
    • 2013
  • 데이터마이닝은 데이터간의 상호 연관성과 다양한 패턴 분석을 통해서 우리가 알 수 없었던 새로운 발견을 할 수 있는 유용한 기술로서 현재 금융, 마케팅, 의료 등 다양한 분야에서 활용되고 있다. 본 논문에서는 공간 데이터마이닝 분석을 통한 데이터의 효과적인 활용방법을 제안한다. 서울시에 거주하는 외국인들의 기본적인 데이터를 활용하고자 한다. 하지만, 이 데이터는 다른 분야의 데이터와 구별되는 특징이 있는데, 민감 정보로 분류된다는 것과 개인정보보호 등과 같은 법적인 문제가 있을 수 있다. 따라서 개인정보를 알 수 없는 기본적 통계적 데이터를 활용하고자 한다. 제안된 방법의 주요한 특징 및 기여도는 다음과 같다. 첫째, 큰 데이터를 여러 질의방법을 통해서 정보로서 이용할 수가 있으며, 정제를 통해서 클러스터링 할 수 있다. 둘째, 이러한 정보들을 새로운 패턴이나 앞으로의 의사결정에 이용할 수 있다. 질의 결과에서 얻은 새로운 정보를 사용자가 보고 판단하여 의사결정에 이용하고자 한다. 제안된 방법의 성능평가에서는 데이터들의 주제별 도식화를 통한 시각적 접근방법을 사용하고자 한다. 제안된 방법의 성능평가 결과는 데이터를 보다 가치 있게 활용하기 위해서 데이터마이닝 기술을 이용한 분석을 통해 우리가 알 수 없었던 새로운 패턴과 결과의 발견이 가능함을 보여준다.

Digital Signage service through Customer Behavior pattern analysis

  • Shin, Min-Chan;Park, Jun-Hee;Lee, Ji-Hoon;Moon, Nammee
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권9호
    • /
    • pp.53-62
    • /
    • 2020
  • 최근 연구된 상품 추천 서비스들은 고객들의 구매 이력을 통해서만 추천이 이루어졌다. 본 논문에서는 구매 이력을 통해 추천뿐만 아니라 고객이 상품을 고를 때 취하는 행동 패턴을 분석하여 관심도가 높은 광고를 노출하는 행동 패턴 분석 기반 디지털 사이니지 서비스를 제안한다. 이 서비스는 고객행동 패턴을 분석하여 실질적으로 관심을 가지는 상품에 대해 관심도를 추출한다. 추출된 관심도와 고객들의 구매 이력을 Wide & Deep 모델을 통해 학습하고, 이를 바탕으로 MF(Matrix Factorization) 모델을 통해 다른 상품들의 희소 벡터를 예측한다. 예측된 상품 관심도에 대한 순위를 도출하고, 적합한 광고를 노출하기 위해 고객과 상호 작용할 수 있는 인도어 사이니지를 활용한다. 본 논문의 서비스를 통해 온라인뿐만이 아닌 오프라인 환경에서도 고객의 관심 정보를 파악하고 단순히 무작위로 노출하는 광고가 아닌 고객에게 적합한 광고를 제공하여 만족도 높은 구매 환경이 조성될 것이다.