범죄는 사전적 예방이 중요하다. 과거 범죄는 사후적으로 대처하고 이를 처벌하는데 집중하였다. 그러나 빅데이터 기술을 적용하면 범죄는 사전적으로 예방될 수 있다. 빅데이터는 범죄자 또는 잠재적 범죄자의 행동을 예측할 수 있기 때문이다. 이 글은 범죄예방을 위해 빅데이터 시스템을 어떻게 구축할지에 대해 논의한다. 구체적으로는 빅데이터의 비정형 데이터와 기본의 정형데이터를 결합하는 방식을 다루고 그 결과로서 범죄예방시스템을 설계한다. 이 연구를 통해 범죄 예방을 위해 빅데이터가 활용되는 가능성을 지문을 통해 기술하였고 이를 기초로 향후 범죄예방프로그램 및 연구에 도움을 줄 것으로 기대된다.
본 연구에서는 최근 이슈가 되고 있는 공간빅데이터에 대한 개념과 효과적으로 공간빅데이터체계를 구축하기 위한 방안을 제시하였다. 공간빅데이터는 3V(volume, variety, velocity)로 정의되고 있는 빅데이터를 6V(volume, variety, velocity, value, veracity, visualization)의 빅데이터로 진화시키는 기반이라 할 수 있다. 공간빅데이터를 효과적으로 구축하기 위해서는 공간빅데이터체계 구축으로 추진되어야 하며, 공간빅데이터체계는 국가공간정보기반, 융합플랫폼, 서비스제공자, 생산요소제공자로서의 역할을 수행해야 한다. 이러한 공간빅데이터체계의 구성요소는 인프라(하드웨어), 기술(소프트웨어), 공간빅데이터(데이터), 인력, 법 제도 등이며, 공간빅데이터체계 구축을 위한 목표로 공간기반 정책수립 지원, 공간빅데이터 플랫폼 기반 산업활성화, 공간 빅데이터 융합기반 조성, 공간관련 사회현안의 적극적 해결로 제시하였다. 그리고 목표에 대한 추진전략은 범정부적 협력체계 구축, 신산업 창출 및 활용 활성화, 성과활용 중심의 공간빅데이터 플랫폼 구축, 공간빅데이터 관련 기술경쟁력 확보로 제시하였다.
본 연구의 목적은 여러 학문에서 다루는 개념과 다양한 현상을 포괄하여 설명할 수 있는 원리가 되는 Big idea를 중심으로 교육과정에 기반을 둔 통합과학 교육과정(standard based integrated science curriculum) 틀을 설계하는 것이다. Big idea에 대한 학습을 통하여 학생들은 개별적인 사실 및 이론을 통합할 수 있을 뿐 아니라 영역 특정적인 지식들에 대한 총체적인 이해를 도모할 수 있다. 이를 위하여 2009 개정 과학과 교육과정에 제시된 초 중등학교 과학의 내용 영역을 분석하여 필수학습요소를 추출하였다. 필수학습요소들을 분석하고 범주화하는 과정을 거쳐 통합의 중심이 되는 네 개의 Big idea인 '다양성', '구조', '상호작용', '변화'를 선정하였다. 지식 피라미드를 이용하여 각각의 Big idea에 속하는 내용지식과 이들을 포괄할 수 있는 학문 내 개념, 간학문적 개념들을 위계적으로 나타내었다. 또한 Big idea를 중심으로 교육과정을 설계할 때 방향을 제시할 수 있는 본질적 질문들을 각각의 Big idea마다 제시하였다. 개발한 통합과학 교육과정 틀을 이용하여 교육 현장에 적용할 수 있는 방법을 구체화한 예시 모듈을 개발하였다.
Alsulbi, Khalil;Khemakhem, Maher;Basuhail, Abdullah;Eassa, Fathy;Jambi, Kamal Mansur;Almarhabi, Khalid
International Journal of Computer Science & Network Security
/
제21권7호
/
pp.43-55
/
2021
The amount of Big Data generated from multiple sources is continuously increasing. Traditional storage methods lack the capacity for such massive amounts of data. Consequently, most organizations have shifted to the use of cloud storage as an alternative option to store Big Data. Despite the significant developments in cloud storage, it still faces many challenges, such as privacy and security concerns. This paper discusses Big Data, its challenges, and different classifications of security and privacy challenges. Furthermore, it proposes a new classification of Big Data security and privacy challenges and offers some perspectives to provide solutions to these challenges.
Traffic accidents increase with the increase of the vehicles in operation on the street. Especially big traffic accidents composed of over 3 killed or 20 injured accidents with the property damage become one of the serious problems to be solved in most of the cities. The purpose of this study is to build the discrimination model on big traffic accidents using the Quantification II theory for establishing the countermeasures to reduce the big traffic accidents. The results are summarized as follows. 1)The existing traffic accident related model could not explain the phenomena of the current traffic accident appropriately. 2) Based on the big traffic accident types vehicle-vehicle, vehicle-alone, vehicle-pedestrian and vehicle-train accident rates 73%, 20.5% 5.6% and two cases respectively. Based on the law violation types safety driving non-fulfillment center line invasion excess speed and signal disobedience were 48.8%, 38.1% 2.8% and 2.8% respectively. 3) Based on the law violation types major factors in big traffic accidents were road and environment, human, and vehicle in order. Those factors were vehicle, road and environment, and human in order based on types of injured driver’s death. 4) Based on the law violation types total hitting and correlation rates of the model were 53.57% and 0.97853. Based on the types of injured driver’s death total hitting and correlation rates of the model were also 71.4% and 0.59583.
오늘날 빅데이터로부터 유의미한 결과를 도출하는 연구가 활발히 진행되고 있다. 본 논문에선 빅데이터의 데이터의 영역들을 파티션(partition)으로 설정하고 각 파티션들의 대표 값을 계산하여 변수들 사이의 상관관계를 분석 할 수 있는 파티션 기반 빅데이터 분석 알고리즘을 제안한다. 본 논문에선 파티션의 크기조절이 가능한 파티션 기반 빅데이터 분석 알고리즘의 파티션 크기 변화에 따른 시각화 결과를 비교분석하였다. 제안한 파티션 기반 빅데이터 분석 알고리즘을 검증하기 위해 의류 회사 'A'의 빅데이터를 분석하여 온도와 판매 가격 변화에 따른 상품의 판매량 변화를 분석하고 시각화하여 유의미한 결과를 얻을 수 있었다.
With vigorous development of global network community, smart phones and mobile devices, enterprises can rapidly collect various kinds of data from internal and external environments. How to discover valuable information and transform it into new business opportunities from big data which grow rapidly is an extremely important issue for current enterprises. This study treats Company S as the subject and tries to find the factors of big data application in enterprises by a modified Decision Making Trial and Evaluation Laboratory (DEMATEL) and perceived benefits - perceived barriers relation matrix as reference for big data application and management of managers or marketing personnel in other organizations or related industry.
Journal of Information Technology Applications and Management
/
제26권5호
/
pp.57-65
/
2019
Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.
본 연구는 공간 빅데이터 서비스 활성화를 위한 정책과제 도출을 목적으로 수행하였다. 이를 위해 관련 선행연구를 검토하고, 국내 외 공간 빅데이터 관련 추진체계 및 정책현황을 분석하였다. 그 결과 미래 공간정보 융 복합 대응정책 미흡, 개인정보 보호 및 서비스 활성화 제도적 기반 미흡, 관련 기술 정책 마련 미흡, 공간 빅데이터 구축 활용을 위한 추진체계 미흡, 공공정보의 품질저하와 공유체계 미흡 등의 문제점이 도출되었다. 다음으로 도출된 문제점을 해결하기 위해 정책 추진방향을 설정하고, 공간 빅데이터 추진체계 마련, 관련 법 제도 개선, 공간 빅데이터 관련 기술 개발, 공간 빅데이터 지원 사업 추진, 공공DB 융 복합 공유체계 마련 총 5가지의 정책과제를 제시하였다.
빅 데이터는 여러 분야에서 다양한 개념으로 사용된다. 예를 들어, 컴퓨터학과 사회학에서 빅 데이터에 대한 접근방법에 차이가 있지만, 데이터분석 관점에서는 공통적인 부분을 갖는다. 즉, 공학이든 사회과학이든 빅 데이터에 대한 분석은 반드시 필요하다. 통계학과 기계학습은 빅 데이터의 분석을 위한 대표적인 분석도구이다. 본 논문에서는 빅 데이터분석을 위한 학습도구에 대하여 알아보고 검색된 빅 데이터 원천에서부터 분석을 거쳐 최종적으로 분석결과를 사용하는 전체과정에 대하여 효율적인 빅 데이터학습 절차에 대하여 제안한다. 특히, 대표적인 빅 데이터 구조를 갖고 있는 특허문서에 대하여 빅데이터학습을 적용하여 특허분석을 수행하고 이 결과를 기술예측에 적용하는 방법에 대하여 연구한다. 제안방법에 대한 실제적용을 위하여 전 세계 특허청으로부터 빅 데이터 관련 특허문서를 검색하여 텍스트 마이닝의 전처리와 통계학의 다중선형회귀분석을 이용한 구체적인 빅 데이터학습에 대한 사례연구를 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.