• Title/Summary/Keyword: Bidirectional dc-dc converter

Search Result 291, Processing Time 0.029 seconds

Reactive Power and Soft-Switching Capability Analysis of Dual-Active-Bridge DC-DC Converters with Dual-Phase-Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.18-30
    • /
    • 2015
  • This paper focuses on a systematical and in-depth analysis of the reactive power and soft-switching regions of Dual Active Bridge (DAB) converters with dual-phase-shift (DPS) control to achieve high efficiency in a wide operating range. The key features of the DPS operating modes are characterized and verified by analytical calculation and experimental tests. The mathematical expressions of the reactive power are derived and the reductions of the reactive power are illustrated with respect to a wide range of output power and voltage conversion ratios. The ZVS soft-switching boundary of the DPS is presented and one more leg with ZVS capability is achieved compared with the CPS control. With the selection of the optimal operating mode, the optimal phase-shift pair is determined by performance indices, which include the minimum peak or rms inductor current. All of the theoretical analysis and optimizations are verified by experimental tests. The experimental results with the DPS demonstrate the efficiency improvement for different load conditions and voltage conversion ratios.

Solar Inverter with Grid Power Generation

  • Suchitra Khoje;Govind Wanje;Ramesh Mali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.162-165
    • /
    • 2023
  • Power can be generated from either renewable or non-renewable sources. Renewable sources are liked to maintain a strategic distance from contamination emanation and rely on upon fossil energizes which is decreasing day by day. The proposed sun powered vitality transformation unit comprises of a sun oriented exhibit, Bidirectional DC-DC converter, single stage inverter and AC. The inverter changes over DC control from the PV board into AC power and offered it to the heap which is associated with the lattice. The photovoltaic sun powered vitality (PV) is the most direct approach to change over sunlight based radiation into power and depends on the photovoltaic impact. The most extreme power point following of the PV yield for all daylight conditions is a key to keep the yield control per unit cost low for fruitful PV applications. Framework associated PV frameworks dependably have an association with people in general power matrix by means of an appropriate inverter in light of the fact that a PV module conveys just dc power. This project presents the new design, Development and Performance Analysis of a Grid Connected PV Inverter. Demonstrate that the proposed framework can lessen the Energy Consumption radically from the power board and give a solid support to the Grid.

Isolated Bidirectional CLLC Resonant Converter using Digital Control for LVDC Distribution System (디지털로 제어되는 저압 직류 배전용 절연형 양방향 CLLC 공진형 컨버터)

  • Jung, Jee-Hoon;Kim, Ho-Sung;Ryu, Myung-Hyo;Kim, Jong-Hyun;Kim, Tae-Jin;Baek, Ju-Won
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.379-380
    • /
    • 2012
  • A bidirectional full-bridge CLLC resonant converter using a digital control method is proposed for a LVDC power distribution system. This converter can operate under high power conversion efficiency since the CLLC resonant network has soft switching capability for primary switches and output rectifiers. In addition, the power conversion efficiency of any directions is exactly the same as each other because of the symmetric structure of the converter. Intelligent digital control methods are proposed to regulate output voltage under any power flow directions. A 5kW prototype converter was designed for a high-frequency galvanic isolation of 380V dc buses using a digital signal processor to verify the performance of the proposed topology and algorithms.

  • PDF

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

Development of 3kW Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 3kW급 하이브리드 ESS 개발)

  • Yang, Seok-Hyun;Kim, Min-Jae;Choi, Se-Wan;Cho, Jun-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • This paper proposes a high-efficiency 3-kW hybrid ESS with emergency power supply. The proposed system enables efficient use of power from photovoltaic (PV) cells and energy storage system (ESS). The proposed system can operate as an uninterruptible power supply (UPS) when grid fault occurs, providing seamless transfer from grid-connected mode to stand-alone mode. The LLC converter for PV achieves ZVS turn-on of switches and ZCS turn-off of diodes, and the isolated bidirectional DC-DC converter for ESS achieves ZCS turn-off regardless of load condition, resulting in high efficiency. The efficiency and performance of the proposed hybrid ESS has been verified by a 3-kW prototype.

A study of residential solar airconditioning system using bidirectional PWM converter (양방향성 PWM컨버터를 이용한 가정용 태양광 에어컨 시스템에 관한 연구)

  • 유권종;송진수;황인호;김홍성;고재석;최규하;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.358-364
    • /
    • 1996
  • Recently, much power demand from domestic power consumer is weakening the allowable power reserve margin in summer, especially at midday for one day due to a steep increase of air cooling loads such as air conditioner. Therefore solar airconditioning system can'be considered as one of the best remedies to meet the increase of peak power. Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can derate the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problem in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. As results, obtained are the characteristics of the PWM converter such as low distorted current waveform, high power factor and bidirectional power control. And also the stability of proposed system is verified by examining the dynamics of step load change and power reversal testing. (author). refs., figs., tabs.

  • PDF

Analysis. Design and Control of Two-Level Voltage Source Converters for HVDC Systems

  • Mohan, D. Madhan;Singh, Bhim;Panigrahi, B.K.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.248-258
    • /
    • 2008
  • The Voltage Source Converter (VSC) is replacing the conventional line commutated current source converters in High Voltage DC (HVDC) transmission systems. The control of a two-level voltage source converter and its design dealt with HVDC systems and various factors such as reactive power, power factor, and harmonics distortion are discussed in detail. Simulation results are given for the two-level converter and designed control is used for bidirectional power flow. The harmonics minimization is taken by extending the 6-pulse VSC to multipulse voltage source converters. The control is also tested and simulated for a 12-pulse voltage source converter to minimize the harmonic distortion in AC currents.

Optimal Control Scheme for Matrix Converter (매트릭스컨버터의 최적제어기법 고찰)

  • Cho, Choon-Ho;Mo, Dong-Yeong;Lee, Sang-Chul;Choi, Chang-Young;Lee, Gun-Sik;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.21-22
    • /
    • 2010
  • Matrix converter is direct power conversion system. Matrix converter has many merits that possible bidirectional power flow, input power factor own control and system without DC-link. But matrix converter has some demerits that need many switching devices and switching loss. This paper suggest optimal matrix converter control scheme for improvement for switching loss part. Proposed control scheme verified that 10% improvement in efficiency, input current's harmonic loss and output voltage's EMI improvement.

  • PDF

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.