• Title/Summary/Keyword: Bicubic interpolation

Search Result 49, Processing Time 0.029 seconds

Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm (영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2013
  • The surveillance system has been developed to be intelligent which can judge and cope by itself using human recognition technique. The existing face recognition is excellent at a short distance but recognition rate is reduced at a long distance. In this paper, we analyze the performance of face recognition according to interpolation and face recognition algorithm in face recognition using the multiple distance face images to training. we use the nearest neighbor, bilinear, bicubic, Lanczos3 interpolations to interpolate face image and PCA and LDA to face recognition. The experimental results show that LDA-based face recognition with bilinear interpolation provides performance in face recognition.

Restoration of Missing Data in Satellite-Observed Sea Surface Temperature using Deep Learning Techniques (딥러닝 기법을 활용한 위성 관측 해수면 온도 자료의 결측부 복원에 관한 연구)

  • Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.536-542
    • /
    • 2023
  • Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

Depth Map Interpolation Using High Frequency Components (고주파 성분을 이용한 깊이맵의 보간)

  • Jang, Seung-Eun;Kim, Sung-Yeol;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.459-470
    • /
    • 2012
  • In this paper, we propose a method to upsample a low-resolution depth map to a high-resolution version. While conventional camera sensors produce high-resolution color images, the sizes of the depth maps of range/depth sensors are usually low. In this paper, we consider the utilization of high-frequency components to the conventional depth map interpolation methods such as bilinear, bicubic, and bilateral. The proposed method is composed of the three steps: high-frequency component extraction, high-frequency component application, and interpolation. Two objective evaluation measures such as sharpness degree and blur metric are used to examine the performance. Experimental results show that the proposed method significantly outperforms other conventional methods by a factor of 2 in terms of sharpness degree. As well, a blur metric is reduced by a factor of 14 %.

SI-based x4 and x8 Super-Resolution for Cultural Property Images (문화재 영상에 대한 SI 기반 4 배 및 8 배 초해상화)

  • Moon, Jaeho;Kim, Soo Ye;Kim, Juyoung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.217-219
    • /
    • 2020
  • 기존 초해상화 방법들은 주로 자연 영상에 대해서는 많이 다뤄져 왔지만 단조$로운 배경과 복잡한 문양, 질감을 가진 문화재 영상에 대해 적용한 사례가 많지 않다. 또한 대부분의 초해상화 기술은 현재 딥러닝을 적용하고 있지만 복잡도와 구현 난이도에서 상대적으로 수월한 비딥러닝 방법을 사용하여 4 배와 8 배로 초해상화를 실현하는 연구 또한 많지 않다. 본 연구에서는 선형 매핑을 이용한 SI (Super Interpolation)을 기반으로 하여 2 배까지 초해상화에 특화된 기존 연구를 문화재 영상에 대하여 4 배 및 8 배로 초해상화 하였다. 간단한 윤곽선 방향 분석 및 선형 매핑으로 4 배 초해상화에서는 PSNR 값을 0.44dB 가량 개선하였으며, 8 배 초해상화에서는 PSNR 값을 0.31dB 가량 개선하였다. 또한 결과 영상에서도 단순 보간법인 Bicubic Interpolation 보다 더욱 선명하고 질감을 잘 표현하는 것을 알 수 있다.

  • PDF

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

Spatial Multilevel Optical Flow Architecture-based Dynamic Motion Estimation in Vehicular Traffic Scenarios

  • Fuentes, Alvaro;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5978-5999
    • /
    • 2018
  • Pedestrian detection is a challenging area in the intelligent vehicles domain. During the last years, many works have been proposed to efficiently detect motion in images. However, the problem becomes more complex when it comes to detecting moving areas while the vehicle is also moving. This paper presents a variational optical flow-based method for motion estimation in vehicular traffic scenarios. We introduce a framework for detecting motion areas with small and large displacements by computing optical flow using a multilevel architecture. The flow field is estimated at the shortest level and then successively computed until the largest level. We include a filtering parameter and a warping process using bicubic interpolation to combine the intermediate flow fields computed at each level during optimization to gain better performance. Furthermore, we find that by including a penalization function, our system is able to effectively reduce the presence of outliers and deal with all expected circumstances in real scenes. Experimental results are performed on various image sequences from Daimler Pedestrian Dataset that includes urban traffic scenarios. Our evaluation demonstrates that despite the complexity of the evaluated scenes, the motion areas with both moving and static camera can be effectively identified.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network (심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구)

  • Kim, Hyo Ju;Yang, Donghun;Park, Jung Yoon;Hwang, Myunggwon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.

Deep Learning based x4 and x8 Super-Resolution for Cultural Property Images (딥러닝 기반 문화재 영상에 대한 4 배 및 8 배 초해상화)

  • Son, Chaeyeon;Kim, Soo Ye;Kim, Juyoung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.118-122
    • /
    • 2020
  • 문화재 영상 데이터는 방대한 양으로 인해 고해상도로 모두 저장이 어렵거나 시간이 지나 상대적으로 화질이 낮은 영상들이 다수 존재하기에 초해상화가 필요한 상황이 많다. 따라서 본 논문에서 처음으로 문화재 영상에 특화된 4 배 및 8 배 딥러닝 기반 초해상화 방식을 제안한다. 문화재 영상 데이터는 배경이 단조롭고 물체가 영상 중간에 위치한다는 특징이 있어 이를 고려해 중간 부분에서만 패치를 추출하는 방식을 적용하여 의미 있는 패치로 학습이 되도록 한다. 또 자연 영상 데이터 셋인 DIV2K 를 사용해 학습하는 방식과 직접 구성한 문화재 데이터 셋을 이용해 학습하는 방식, 그 둘을 적절히 함께 사용하여 학습하는 전이 학습 방법까지 세 가지로 학습하여 초해상화의 성능을 향상시키는 방법을 제안한다. 그 결과, 쌍삼차 보간법(Bicubic interpolation)보다 4 배 초해상화에서는 약 1.25dB, 8 배 초해상화에서는 약 1.26dB 의 성능 개선을 확인하였으며, 단순 DIV2K 로 학습한 방식보다는 4 배에서는 0.06dB, 8 배에서는 0.17dB 의 성능 개선을 확인하였다.

  • PDF