In this study,the procedure of interpolation surface modeling on bicubic spline patch equation and NC machining are presented. The procedure consists of three parts : patch modeling,cutter location data generation,post processing and NC milling machining. For generation of the cutter location data,tangent vectors and units normal vectors on the patch must be calculated. In order to investigate the properties of the interpolation surface created by bicubic spline patch, two kinds of end conditions, clamped end condition and relaxed end condition,were applied in this study. The shape of the patch depends on the magnitide of the tangent vectors and twist vectors at the corners of bicubic surface patch. the patch generated by relaxed end condition more approximated to the surface patch which was given.
If a image doesn't include sufficient data of output size and resolution, we will scan again the image. Interpolation generates a new pixel by methematical average of processing. In the interpolation method, there are nearest neighbor interpolation, bilinear interpolation and bicubic interpolation etc. This study was carried out for the purpose of researching compatible method to digital scan image caused by only different interpolation methods. Nearest neighbor interpolation show superior effect in the drawing image. Bilinear interpolation show reduction in detail and contrast. Bicubic interpolation show superior effect in the digital photo image USM(Unsharp Mask) application after extension by interpolation show better than extension by interpolation after USM(unsharp mask) application.
In the image object classification problem, low-resolution images may have a negative impact on the classification result, especially when the classification method, such as a convolutional neural network (CNN) model, is trained on a high-resolution (HR) image dataset. In this paper, we analyze the behavior of applying a classical super-resolution (SR) method such as bicubic interpolation, and a deep CNN model such as SRCNN to enhance low-resolution (LR) weeds images used for classification. Using an HR dataset, we first train a CNN model for weeds image classification with a default input size of 128 × 128. Then, given an LR weeds image, we rescale to default input size by applying the bicubic interpolation or the SRCNN model. We analyze these two approaches on the Chonnam National University (CNU) weeds dataset and find that SRCNN is suitable for the image size is smaller than 80 × 80, while bicubic interpolation is convenient for a larger image.
Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권9호
/
pp.2351-2369
/
2012
This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.
Journal of information and communication convergence engineering
/
제21권1호
/
pp.17-23
/
2023
Recently, several high-performance instance segmentation models have used the Mask R-CNN model as a baseline, which reached a historical peak in instance segmentation in 2017. There are numerous derived models using the Mask R-CNN model, and if the performance of Mask R-CNN is improved, the performance of the derived models is also anticipated to improve. The Mask R-CNN uses interpolation to adjust the image size, and the input differs depending on the interpolation method. Therefore, in this study, the performance change of Mask R-CNN was compared when various interpolation methods were applied to the transform layer to improve the performance of Mask R-CNN. To train and evaluate the models, this study utilized the PennFudan and Balloon datasets and the AP metric was used to evaluate model performance. As a result of the experiment, the derived Mask R-CNN model showed the best performance when bicubic interpolation was used in the transform layer.
본 논문에서는 기울어진 문자, 다양한 크기, 글씨체, 흐린 문자를 포함한 입력영상의 문자 복원과 인식, 효율적인 도서 검색을 위한 광학문자인식 알고리즘을 제안한다. 본 논문에서 제안한 광학문자 인식알고리즘은 검출부와 인식부로 구성되며, 검출부에서는 복잡한 배경에서 정확한 도서 영역 검출을 위하여 로버츠 에지 연산자와 허도로프 거리 알고리즘을 적용하여 필요한 영역을 검출하였다. 또한 인식부에서는 문자의 크기와 경사도, 부분 손실 등의 영상에 강인성을 갖는 바이큐빅 보간법을 적용하여 데이터 손실 복원과, 반자동 기울기를 갖는 입력 영상의 보정을 하였다. 모의실험 결과 기존 알고리즘 보다 인식률에서는 6%, 검색시간에서는 1.077초 더 우수함을 확인하였다.
디지털 영상 확대를 위한 영상 스케일링은 고품질의 영상이 요구될수록 많은 수행시간 및 하드웨어 자원량이 요구된다. 본 논문에서는 적은 연산량 및 하드웨어 자원으로 고품질 영상을 생성하는 이중 선형-3차회선 보간법을 제안한다. 제안한 보간법은 4번의 선형 보간법과 1번의 3차회선 보간법으로 이루어진 선형-3차회선 보간법을 수평방향과 수직방향으로 각각 수행하는 구조이다. 실험결과, 제안하는 보간법은 PSNR과 수행시간 및 하드웨어 자원량 측면에서 비교했을 때, 적은 연산량 및 하드웨어 자원으로 양 3차회선 보간법보다 우수한 PSNR을 제공했다.
In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.
영상 보간은 영상 처리 분야에서 전통적으로 많이 연구되어 왔고 널리 사용되고 있다. 그에 따라 다양한 보간 능력과 계산 복잡도를 갖는 보간법들이 많이 시도되고 있다. 이 논문에서는 기존의 선형 보간법을 위한 새로운 거리 가중치 개념과 보간되는 값의 상하, 좌우 지역적 패턴을 고려하여 반영하는 적응적 선형 보간법(New Adaptive Linear Interpolation : NAL Interpolation)을 제안한다. 새로운 거리 가중치는 기존의 거리에 선형적으로 비례하는 가중치의 개념에서 벗어나 가까운 화소에 더욱 더 영향을 많이 받는 특성을 이용하여 거리 가중치를 2차, 3차 다항식으로 개선한 것이다. 또한 NAL 보간법은 보간되는 화소의 상하, 좌우 패턴을 고려하는 선형 보간법으로 MF(magnification factor)의 변화에 따라 보다 선명한 이미지를 쉽게 얻기 위해서 보간하기 전 MF에 따라 패턴을 반영하는 정도를 결정하는 패턴 가중치를 이용한다. 실험 결과에서 제안된 보간법은 계산 복잡도 면에서 기존의 bicubic 보간법 보다 훨씬 간단할 뿐만 아니라 더 좋은 PSNR(peak signal-to-noise ratio)를 갖고 보다 선명한 화질의 영상으로 보간하였다.
멀티미디어 산업이 발전함에 따라 다양한 형식의 해상도를 표시할 수 있게 되었다. 따라서 고화질을 유지하며 해상도를 변환하는 스케일러 알고리즘의 성능과 이를 하드웨어로 구현하는 것은 중요하다고 할 수 있다. 본 논문에서는 이미지 확대/축소 스케일러의 하드웨어 설계를 고려하여 수직 방향으로는 수정된 양 선형 보간, 수평 방향으로는 양 3차 회선 보간을 사용하여 라인 메모리 부담을 줄인 조합 스케일러 알고리즘을 제안한다. 본 논문은 정량적 그리고 정성적 평가를 통해 제안하는 알고리즘의 성능을 널리 사용되는 다른 세 가지 알고리즘과 비교 평가하였고, 이를 하드웨어로 구현할 때에 필요한 하드웨어 부담을 비교하였다. 본 논문은 성능평가를 위해 정현파 신호와 8개의 일반 이미지를 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.